共查询到19条相似文献,搜索用时 93 毫秒
1.
复合使用高效减水剂与缓凝剂对水泥水化历程的影响 总被引:15,自引:0,他引:15
用直接测温法及X射线衍射技术,系统研究了萘系、氨基磺酸盐系及聚羧酸盐系3种高效减水剂,三聚磷酸钠及糖钙2种缓凝剂及复合使用高效减水剂与缓凝剂对水泥水化热、水化温峰、温峰出现时间及不同水化龄期Ca(OH)2和钙矾石(ettringaite,AFt)生成量等方面的影响.结果表明:单掺高效减水剂使水化温峰升高,温峰出现时间延迟,水化热及温峰时的Ca(OH)2生成量增加.单掺缓凝剂使水化温峰降低,温峰出现时间大幅度延迟,水化热及温峰时的Ca(OH)2生成量明显减少.复合使用高效减水剂与缓凝剂时,由于协同效应,使高效减水剂的分散作用及缓凝剂的缓凝作用同时得到加强.与单掺缓凝剂相比,复掺后水泥水化温峰出现的时间进一步延迟,水化温峰进一步降低,水化热及水化温峰时Ca(OH)2生成量进一步减少;但是,外加剂对AFt生成量影响不大. 相似文献
2.
温度对补偿收缩复合胶凝材料水化放热特性的影响 总被引:1,自引:0,他引:1
采用等温量热法,测定了在低水胶比条件下,不同组成的补偿收缩复合胶凝材料在不同水化温度时的水化放热曲线,探讨了在接近实际结构内部环境时补偿收缩复合胶凝材料的水化特性.在25℃,水胶质量比为0.3的条件下,硫铝酸盐型膨胀剂会抑制复合胶凝材料的正常水化,使其水化放热速率迅速降低,总放热量大幅度减小.提高水化温度消除了膨胀剂对于复合胶凝材料水化反应的抑制作用.在45℃时,掺加膨胀剂的复合胶凝材料的最大水化放热速率和96 h总放热量与纯硅酸盐水泥相当或更高.适当提高水化温度促进了矿物掺和料的水化反应,使得补偿收缩复合胶凝材料的水化硬化过程与膨胀剂效能发挥时间更好地匹配. 相似文献
3.
本文研究了水化热抑制剂(TRI)对水泥-粉煤灰-矿渣复合胶凝材料早期水化过程。通过改变矿物掺合料在胶凝材料中的质量占比以及TRI的掺量,研究了胶凝材料的水化特性,并基于Krstulovic-Dabic水化动力学模型计算了反应速率常数、几何晶体生长指数等动力学参数。结果表明,矿物掺合料和TRI复合使用会延缓胶凝材料水化并降低最大放热速率;复合胶凝材料的水化过程均有结晶成核与晶体生长、相边界反应以及扩散3个阶段,Krstulovic-Dabic水化动力学模型能较好地模拟各复合胶凝材料的水化过程;矿物掺合料和TRI会影响复合胶凝材料水化产物的结晶成核以及晶体生长,并降低复合胶凝材料各阶段的水化速率。 相似文献
4.
水泥基胶凝材料水化放热行为的分析和试验研究 总被引:1,自引:0,他引:1
大体积混凝土结构中降低温度应力的关键是降低混凝土中胶凝材料水化热,所以研究掺硅灰、磨细矿渣、粉煤灰、膨胀剂胶凝材料体系的水化放热行为十分重要.首先在化学反应动力学原理基础上,采用微积分理论推导出水泥基胶凝材料恒温水化放热过程的统一表达式;然后用溶解法测试掺硅灰、矿粉、粉煤灰、膨胀剂胶凝材料体系的水化热,在试验的基础上分析加掺合料胶凝材料的水化放热行为. 相似文献
5.
研究了羟基乙叉二膦酸(HP)、蔗糖(ZT)和葡萄糖酸钠(PN)3种缓凝剂对水泥净浆凝结时间和抗压强度的影响,并利用水化热测试、XRD、热重等手段分析对延缓水泥水化的影响机理.结果表明,随着3种缓凝剂掺量的增大,凝结时间逐渐延长,掺0.3% 和0.4% 的ZT出现不凝的现象,掺0.3% 和0.4% 的PN和HP均达超缓凝,7 d时无强度,14 d和21 d强度明显低于空白组(KB),但28 d强度接近空白组,到90 d则均高于空白组.HP的超缓凝作用使水泥的水化程度缓慢降低的效果最明显,其水化产物中的AFt略低于KB的,而AFm量极少,远低于KB的,CH以及包括C-S-H凝胶在内的非晶相接近KB的.与PN相比,HP对水泥的水化抑制效果较好,HP的水化产物AFt量略低于PN的,CH以及包括C-S-H凝胶在内的非晶相与PN接近. 相似文献
6.
针对油井施工高温环境下水泥浆缓凝技术的需要,以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、马来酸酐(MA)和丙烯酰胺(AM)为单体合成了三元共聚物W J-1型缓凝剂.经正交实验得最佳合成条件:单体质量比AMPS:MA:AM =21:9:8、反应温度90℃、反应时间5h、∞(引发剂)=4%(占所有单体质量比).高温高压(120℃、73.9MPa)稠化时间表明其具有良好的缓凝性能.用低场核磁对比研究了纯水泥浆G和掺加缓凝剂的水泥浆GR的横向弛豫时间在不同时间点的T2值分布情况和T2总信号量随水化时间的变化.结果表明:在初始水化阶段的150min内,对比弛豫峰的变化发现,水泥浆GR的弛豫峰峰形和峰顶位置均无明显变化,水泥浆G的弛豫峰峰形变窄且峰顶位置向短弛豫方向偏移;随水化时间的进行,T2总信号量不断减小,反映了浆体中自由水转变为化学结合水的过程. 相似文献
7.
用变形测试、热重分析和化学滴定方法,系统研究了葡萄糖酸钠和柠檬酸钠2种缓凝剂对掺有CaO膨胀剂水泥净浆不同龄期自由自生体积变形、限制自生体积变形,以及CaO膨胀熟料水化速率、水化进程等方面的影响。结果表明:缓凝剂的使用延缓了CaO膨胀剂水化进程,0.08%掺量下纯水中11h和水泥净浆中7d水化程度分别降低了15%和25%以上;增大了水泥净浆自由自生体积变形,0.08%掺量下28d较基准提高了50%以上;减小了约束状态下的限制自生体积变形,0.08%掺量下最大膨胀率降低了超过90%以上,从而抑制了CaO膨胀剂的膨胀指数和膨胀效能。绝大多数实际情况下有约束存在时,不利于对水泥基材料收缩的补偿。 相似文献
8.
9.
10.
水胶比和组成对补偿收缩胶凝材料的水化反应的影响 总被引:2,自引:1,他引:2
在不同水胶比条件下,利用等温量热法测量了不同组成的补偿收缩胶凝材料的水化放热速率和放热量曲线,以评价其水化特性及其对强度和膨胀性能的影响。随着水胶比逐渐降低,水化受到抑制。在水胶比为0.3时,补偿收缩胶凝材料的总放热量和水化放热速率有明显降低。由矿物掺和料、膨胀剂和硅酸盐水泥组成的复合胶凝材料的总放热量和水化放热速率较低,但后期水化放热增加量较大。水胶比大于0.4后,水胶比的变化对复合胶凝材料的水化过程影响很小。 相似文献
11.
不同区域的水泥、外加剂有各自地域特性,普遍存在聚羧酸减水剂与水泥的相容性的问题.采用异戊烯醇聚氧乙烯醚(TPEG)、丙烯酸(AA)为聚合单体、在引发剂(双氧水、抗坏血酸)的作用下、协同链转移剂(巯基乙酸)调整聚羧酸减水剂分子量,在水溶液中自由基聚合合成聚醚类聚羧酸减水剂.通过两种不同配方的聚醚类聚羧酸减水剂,比较不同配方减水剂与不同区域水泥的相容性,考察不同聚羧酸对水泥水化历程的影响,诠释减水剂的作用机理. 相似文献
12.
通过试验,模拟多年冻土区低负温环境,完成了低负温环境下水泥水化的宏观影响因素的研究,确定了入模温度、养护温度、水化速度对水泥水化程度和成熟度的影响,以及在这样的影响因素下其水泥水化随龄期的变化规律,进而为在多年冻土地区的混凝土施工提供重要的理论依据.在持续低负温环境下水泥水化是一个非常复杂的过程,一定龄期内,受其入模温度以及养护温度的影响较大,水化程度以及成熟度越小,其混凝土的强度增长越低.本文通过对以上五个因素的研究,得出了之间的相互影响规律,为进一步研究水泥水化打下坚实的理论支撑,为研究多年冻土区灌注桩混凝土强度发展规律提供了良好的铺垫. 相似文献
13.
14.
研究了聚羧酸系高效减水剂(PCE)和萘系减水剂(FDN)对硫铝酸盐水泥净浆工作性能及力学性能影响,通过XRD和SEM检测手段对水化产物进行表征.结果表明:两种减水剂对硫铝酸盐水泥净浆流动度的影响存在饱和点;相比于FDN型减水剂,PCE型减水剂对硫铝酸盐水泥净浆具有更好的减水效率及分散能力.PCE型减水剂阻碍硫铝酸盐水泥净浆早期水化,并降低硫铝酸盐水泥净浆1 d抗压强度;FDN型减水剂能够加速硫铝酸盐水泥净浆早期水化,缩短初凝和终凝时间,提高硫铝酸盐水泥净浆1d抗压强度.两种减水剂对硫铝酸盐水泥净浆3d后抗压强度及水化产物种类均没有影响. 相似文献
15.
采用等温量热法研究高效减水剂对普通、中热水泥掺入不同品种及不同掺量的掺合料后水化热的耦合作用规律,分析了减水剂、矿物掺合料及两者双掺对水泥水化热及放热速率的影响.结果表明:矿物掺合料可减缓水泥水化放热的速率,推迟放热峰值的出现,粉煤灰的缓凝效果和削峰效果较矿渣要显著.外加剂对掺粉煤灰水泥的早期水化热有显著的降低作用. 相似文献
16.
研究了掺入抗裂防水剂的硅酸盐水泥砂浆早期变形性能以及水化温升特征.试验选择用水灰比为0.35、0.40、0.45,抗裂防水剂掺量为6%、10%、14%.用膨胀收缩仪,测试在不同的养护条件下试件收缩变形;利用智能多点测温仪,测试硅酸盐水泥砂浆的水化升温特征.结果表明:除0.35水灰比,抗裂防水剂为14%的硅酸盐水泥砂浆以外,其余组硅酸盐水泥砂浆,14 d的膨胀值均达到最大值,14 d以后均产生收缩.0.4水灰比的胶砂,经过60℃、70℃、80℃等成熟度养护再转常温养护后,表现为先膨胀后收缩,且膨胀值随抗裂防水剂掺量的增加而增大.当抗裂防水剂掺量为6%时,硅酸盐水泥砂浆的早期水化温升变化相差不大,抗裂防水剂掺量为10%、14%时,硅酸盐水泥砂浆的早期水化温升差别较大. 相似文献
17.
采用质量分数为5%~25%的改性磷石膏、15%的硅酸盐水泥熟料、60%~80%的矿渣混合磨细制成石膏矿渣水泥,研究了改性磷石膏掺量对石膏矿渣水泥浆体的抗压强度、水化热、孔溶液pH值及水化产物的影响情况.结果表明,掺入改性磷石膏使得石膏矿渣水泥的3 d、7 d抗压强度降低,其掺量为10%、15%时,水泥的28 d、90 d抗压强度超过普通硅酸盐水泥.在3 d至90 d龄期内,水泥孔溶液pH值随龄期增长而逐渐增大.在相同龄期时,随着改性磷石膏掺量的增大,水泥孔溶液pH值减小,水化放热峰出现时间延缓.微观分析表明,掺入改性磷石膏后,28 d龄期时的水泥水化产物主要为钙矾石和C-S-H凝胶,水化产物的生成量在改性磷石膏掺量为15%时最多. 相似文献
18.
19.
研究了不同种类缓凝剂对磷建筑石膏凝结时间和力学强度的影响,测试了添加不同种类缓凝剂后磷建筑石膏的绝干密度,水化热.并利用XRD检测了磷建筑石膏的物相组成,运用SEM分析了改性后磷建筑石膏的微观形貌.结果表明:NS、NP和SC对磷建筑石膏均具有一定的缓凝作用,但效果不同,SC缓凝效果优于其他两种;在相同掺量的情况下,SC对磷建筑石膏硬化体强度影响较为明显,并且其对磷建筑石膏硬化体绝干密度的影响也最大.缓凝剂SC可以使磷建筑石膏的水化放热时间推迟,降低了水化放热峰.缓凝剂SC的合适掺量范围为0.1%~0.2%.实验结果为进一步研究磷建筑石膏的缓凝机理提供了参考价值. 相似文献