首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
由于风速具有间歇性、随机性及波动性等特点,导致大规模风电并网对电力系统的安全、稳定运行带来严重影响。文章提出一种基于最大相关最小冗余(Maximum Correlation Minimum Redundancy,MRMR)的离群鲁棒极限学习机(Outlier Robust Extreme Learning Machine,ORELM)的短期风速预测新方法。首先分析影响风速的属性特征,采用MRMR算法来衡量不同风速属性特征与风速的相关性,进而确定风速属性特征的输入维度;然后对极限学习机(Extreme Learning Machine,ELM)进行优化,构建ORELM风速预测模型。最后以美国某大型风电场实测数据为依据进行风速预测,仿真结果表明该方法具有较高的预测精度。  相似文献   

2.
针对风电场风速预测准确度不高的问题,提出一种基于风速波动特征提取的超短期风速预测方法。首先建立风速-风速变化量联合概率密度模型,分析风速的不确定性特征;根据风速波动特征,应用集合经验模态分解(EEMD)和风速分量样本熵(SampEn)值,将风速分解重组为波动量和趋势量;应用人工鱼群算法(AFSA)优化小波神经网络(WNN)进行趋势量预测;应用改进非线性自回归(INARX)神经网络对风速波动量进行预测,进而得到预测风速。通过实际风电场风速仿真预测,并与多种预测方法对比,表明该预测方法预测结果误差较小,可准确地进行超短期风速预测。  相似文献   

3.
4.
为提高短期风速预测的准确性,提出一种基于PAM聚类、奇异谱分解(SSD)和LSTM神经网络的组合预测模型来预测短期风速,以解决上述问题。首先,为提高神经网络的学习效率,采用PAM算法对原始风速数据进行相似日聚类;其次,SSD具有抑制模态混叠和虚假分量产生的优点,使用SSD分解风速序列,提取多尺度规律;最后,由于LSTM神经网络捕捉长时间依赖的序列的波动规律的能力较强,使用LSTM神经网络对分解后的风速分量进行预测,将各分量预测值叠加得到最终预测结果。实验结果表明,基于PAM-SSD-LSTM的组合预测模型可有效提高风速短期预测的准确率。  相似文献   

5.
基于持续法、人工神经网络法(ANN)和支持向量机(SVM)3种不同预测模型对内蒙古某风电场短期风速进行了预测研究,比较了不同单一预测模型的预测精度,并进行了4种不同预测模型的组合预测。计算结果表明,单一预测模型中支持向量机方法精度最高,而组合预测中3种方法组合的预测精度最高,并且组合预测精度均高于单一预测方法的精度。同时发现,当单一模型预测误差之间存在较强的负相关关系时,组合预测精度提高明显;而当单一模型预测误差之间存在较强的正相关关系时,则组合预测精度改进有限。  相似文献   

6.
针对风速时间序列复杂的非线性特征,根据C-C算法确定重构参数(嵌入维数及延迟时间)并对风速重构相空间,建立径向基函数神经网络(RBF网络)及Volterra自适应预测模型对风速时间序列进行预测,以Lorenz方程数值解为例验证了两种预测方法的可行性。结果表明:RBF神经网络模型和Volterra自适应预测模型都能对实测风速时间序列进行较为准确的预测,预测误差分别在0.3和0.1 m/s内;Volterra自适应预测模型预测结果总体较RBF神经网络模型预测精度更高,且随着预测时间的增大,预测误差呈增大趋势,这与混沌存在初值敏感性的特征相符。  相似文献   

7.
随着风力发电的快速发展,并且风力发电系统的出力与风电场风速存在着的特殊关系,使得对风电场的风速实现较准确的预测已逐步成为研究的热点。该文先提出一种简单的的风速预测方法,即将指数平滑法应用到风速预测,并验证了指数平滑法预测风速的可行性。此外,为了提高预测精度,还提出了两种新的组合预测的方法,即基于指数平滑和灰色模型(GM)的组合预测方法、基于自回归滑动平均(ARMA)模型和灰色模型的组合预测方法。实例计算结果表明,组合预测方法比单独的用一种方法的预测效果要好,尤其是基于自回归滑动平均模型和灰色模型的组合预测方法更具有优势。  相似文献   

8.
基于SVM方法的风电场短期风速预测   总被引:2,自引:3,他引:2  
针对基于支持向量机的风电场短期风速预测进行研究.选择了不同的输入向量(历史风速时间序列,历史风速和温度.历史风速、温度和风向,历史风速、温度和时间)作为输入进行误差对比分析。实测数据及分析结果表明,采用历史风度和温度的二输入模型,预测效果最佳,为风速的短期预测和发电量预测提供了较好的参考价值。  相似文献   

9.
基于ARMA模型的风电场风速短期预测   总被引:3,自引:1,他引:3  
通过分析达坂城风电场风速数据并建立ARMA模型,基于时间序列分析法实现了提前1h风速预测,分析预测结果证明预测时间和风速震荡性是影响风速预测精度的主要因素,为更长时间的风速预测提供理论基础。  相似文献   

10.
针对风电场短期风速预测存在精度较低的问题,引入了一种基于灰色模型与模拟退火粒子群优化BP神经网络(SAPSO-BP)相互嵌入而成的预测模型。该方法在SAPSO-BP网络的输入层前增加一个灰化层,在网络输出层后增加一个白化层,以改进网络的拓扑结构,提高模型的容错能力。仿真试验结果表明,该预测模型具有较好的鲁棒性,其平均绝对误差及均方误差分别为18.7%和5.11%,可用于风电场短期风速的预测。  相似文献   

11.
风速具有较大的随机波动性,影响了电网的稳定性,风速预测对于风电并网问题至关重要。本研究采用灰色-马尔可夫链(GM-Markov)与最小二乘支持向量机(LSSVM)预测模型分别对风速进行预测,比较了各单一预测模型的精度;在此基础上研究了动态权重组合模型与0-1法组合预测模型。然后以国内某风电场的实测风速数据为例进行分析,结果表明,单一预测方法时好时坏,稳定性较差,组合预测模型总体效果较好,具有较大的实用价值。  相似文献   

12.
基于时间序列模型的风电场风速预测研究   总被引:1,自引:0,他引:1  
基于时间序列的方法,对风速的长期预测进行了研究,并在工程应用的基础上提出了新的预测思路:首先将风速信号分解成趋势信号和去趋势项随机信号,然后分别用滑动滤波和小波分析这2种方法对分解出的去趋势项随机信号进行数据处理并比较,再用时间序列的方法对趋势项信号和处理后的信号分别进行预测并叠加,得到最后的预测风速信号.结果表明:五项滑动滤波处理数据的方法与Daubechies小波分解法均能实现精度较高的风速长期预测;与小波分解法相比,滑动滤波方法算法的复杂性低,在工程应用上可行性更高.  相似文献   

13.
风速预测在风电场安全并网和智能化管理中起着决定性作用,针对风速的非线性和不稳定等特点,提出了一种基于变分模态分解(VMD)和改进鲸鱼算法优化的模糊神经网络(VMD-CGWOA-ANFIS)的混合预测模型。该模型首先使用变分模态分解技术将原始风速序列分解为一系列子序列,而后对各子序列分别采用模糊神经网络(ANFIS)建立预测模型。为进一步提高预测精度,同时克服鲸鱼(WOA)算法容易陷入局部最优和收敛过早的缺点,引入共轭梯度算法(CG)对WOA进行改进,利用改进的CGWOA算法对ANFIS参数进行优化。使用优化后的ANFIS分别对变分模态分解后的各子序列进行预测,最后将预测后的各子序列叠加得到最终预测结果。为测试模型的有效性,选择宁夏地区3组实际风电数据进行模拟试验,将ANFIS,VMD-ANFIS,VMD-WOA-ANFIS与提出模型进行对比,结果表明所提出的混合模型预测精度明显高于其他对比模型。  相似文献   

14.
一种实时校正的改进BP神经网络超短期   总被引:1,自引:0,他引:1  
摘要: 风电机组出力可由风速计算得出,提高风速预测精度对减小风电并网冲击、合理调度风能资源至关重要。基于风电场气象及风速数据的时间连续性,提出了一种加入误差实时校正环节及风速变化趋势分析的改进方法介绍,在提高风速预测精度的同时有效改善了过校正情况。采用某个风电场的实际运行数据进行了仿真,结果表明,所提出的改进BP神经网络风速预测模型方法具有较好的预测精度。  相似文献   

15.
受风能随机性和预测模型的影响,风速预测时不可避免地会出现误差,通过挖掘误差特性可探索新的风速预测模型,提高预测精度。提出一种基于误差预测的风速集成学习模型。该模型首先采用快速集合经验模态分解来降低风速序列的随机性,其次采用布谷鸟算法优化最小二乘支持向量机对分解得到的各分量分别建立学习预测模型。同时将历史预测误差作为一个新序列,进行建模预测。最后将原序列的风速预测结果和误差序列预测结果进行叠加得到最终风速预测结果。算例结果表明,与传统方法相比,所提集成预测模型具有更好的预测精度,证明了在风速预测中,精细化挖掘预测误差对于提高预测精度的有效作用。  相似文献   

16.
风速具有较大的随机波动性,影响电网的稳定性,良好的风速预测是解决风电并网问题的关键。为了提高风速预测的精确性,首先对风速数据进行相似性样本的提取,采用分段线性化的搜索方法,求出各小段风速的斜率与长度所占的比重,继而找出相似性距离最小的曲线簇。并以此作为训练样本,采用最小二乘支持向量机(LSSVM)模型对风速进行预测。预测结果表明,采用风速的相似曲线簇进行LSSVM模型训练所得的风速和风电功率预测结果更优。  相似文献   

17.
介绍了基于AdaBoost的多神经网络集成预测方法。集成方法的预测结果优于其他方法的预测结果,这一点在理论上和经验上已经得到证明。AdaBoost是适用于时间序列预测的集成方法。基于AdaBoost算法,采用多个BP神经网络训练随机生成的风速样本,再由多个训练结果生成最终的风速预测值。用该方法预测的误差低于用单一BP神经网络进行的预测,其分析和仿真结果表明了其优越性。  相似文献   

18.
基于激光测风雷达数据,针对风速的非线性特性,提出麻雀搜索算法(sparrow search algorithm, SSA)优化极限学习机(extreme learning machine,ELM)进行风速预测。搭建预测模型,根据预测风速对风电机组进行预变桨,分析风电机组叶根矩载荷。采用新疆某风电场激光测风雷达数据仿真并与其他预测模型分析对比。结果表明,麻雀算法优化的极限学习机可精确预测风速,且显著提升极限学习机预测速度及不同风速条件下的动态性能;预变桨后,风电机组叶根矩载荷大幅减小,提升了桨叶使用寿命及运行安全性。  相似文献   

19.
考虑到风速时间序列非平稳特性和时序关联难以建模的问题,提出一种基于变分模态分解和深度门控循环网络的风速短期预测模型。该模型首先使用变分模态分解非递归地将原始风速序列分解为预先设定层数的子分量,以期降低原始序列的不平稳度,使用深度门控网络分别对各子分量建模预测,最后叠加各分量的预测结果,得到风速的预测结果。实例研究表明所提模型能够有效地跟踪风速的变化,具有较高的短期预测精度。  相似文献   

20.
针对风速时间序列不稳定导致其难以准确预测的问题,提出一种基于最优变分模态分解(OVMD)和蝙蝠算法(BA)优化最小二乘支持向量机(LSSVM)的短期风速预测模型。采用OVMD技术,将原始风速时间序列先分解为若干个相对稳定的分量序列,然后对各个分量分别建立LSSVM模型进行预测,并采用蝙蝠算法优化LSSVM中的参数,最后对优化的分量预测模型的预测值求和,即得到原始风速序列的预测值。算例分析表明,该模型具有较高的预测精度,能有效跟踪风速的变化规律。研究成果为短期风速预测提供了新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号