首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
李琴  张春红  孙可伟 《硅酸盐通报》2016,35(7):2187-2192
本文选用五种不同的激发剂,在相同的条件下激发再生微粉的活性,以砂浆的抗压强度、孔隙率、平均孔径、SEM为指标,根据指标判断五种激发剂激发再生微粉的效果,实验结果表明:CaCl2激发再生微粉效果最好,CaSO4·2H2O激发效果次之,NaOH、Ca(OH)2 、Na2SO4激发效果稍差,但其再生微粉活性激发的效果都好于无激发剂作用的对比试样.  相似文献   

2.
以再生微粉砂浆的强度、微观孔隙率为指标,结合部分再生微粉砂浆的XRD衍射图谱,对比研究在不同温度下,碱激发和不用碱激发再生微粉活性制备砂浆的抗压强度大小.通过比较研究发现碱激发反应温度对再生微粉砂浆抗压强度影响很大;温度过低,碱激发反应慢,一定时间内生成的胶凝性物质少,砂浆内孔隙率高,抗压强度低;温度过高,碱激发反应快,体系内生成胶凝土物凝结太快,砂浆孔隙率高,抗压强度低;因此碱激发再生微粉活性存在合适温度.  相似文献   

3.
再生微粉由于活性较低,难以被有效利用,造成极大的资源浪费。为激发再生微粉的活性,本文研究了四种传统碱激发剂(氢氧化钠、氢氧化钙、氢氧化镁、水玻璃)、两种醇胺类激发剂(多元异构醇胺、三乙醇胺)和一种纳米晶核型激发剂对掺再生微粉砂浆抗压强度的影响,并通过分析化学激发剂对再生微粉-水泥浆体水化放热、水化产物及微观结构的影响揭示其提升机理。结果表明:氢氧化钠和水玻璃会导致掺再生微粉砂浆的抗压强度进一步降低,且砂浆强度与氢氧化钠和水玻璃的掺量成反比;氢氧化钙、氢氧化镁、三乙醇胺和纳米晶核型激发剂在一定掺量条件下可以提高早期强度,但无法提高后期强度;多元异构醇胺激发剂的掺入明显促进了矿物相铝酸三钙(C3A)与铁铝酸四钙(C4AF)的水化,从而加快再生微粉-水泥浆体的水化进程,提高水泥基体的密实度并改善水泥基体与砂的界面黏结情况,使砂浆各龄期抗压强度明显提高,在最佳掺量0.2%(质量分数)时再生微粉的活性指数由62.8%提升至74.8%。研究成果可为提高再生微粉的利用率从而实现建筑行业节能减排目标提供借鉴和参考。  相似文献   

4.
为提高建筑垃圾再生微粉的利用率,通过不同种类的激发剂以及机械研磨处理来激发再生微粉的活性,制备水泥胶砂试体,以抗压强度、28 d活性指数以及微观结构为评价依据,研究不同种类、不同掺量激发剂对再生微粉活性的激发效果。结果表明:化学激发剂及机械球磨处理均可提高再生微粉的活性,在28 d龄期时,化学激发剂中4%Na2SO4激发效果最好,4%CaCl2的激发效果最差,机械球磨处理中,90 min为最佳处理时间。从微观角度观察到再生微粉经过激发剂和机械球磨处理之后,其制成的胶砂试体结构变得更加平整和密实。  相似文献   

5.
刘潮  水中和  高旭  马赛 《硅酸盐通报》2020,39(9):2877-2884
本文探讨了高炉矿渣含量和激发剂参数对碱激发煤矸石材料流动性、力学性能、干缩率、抗硫酸盐侵蚀性和微观结构的影响.结果 表明,矿渣含量是影响碱激发煤矸石材料流动度、抗压强度和干缩率的主要原因,其次是激发剂参数.随着碱溶液浓度增加,其流动度和抗压强度随之提高,但高浓度的碱溶液对反应过程起到了抑制作用,使流动度和抗压强度降低.体系中矿渣含量的增加促进C-S-H凝胶生成,使得煤矸石基碱激发材料更加致密,进而提高了抗压强度和抗硫酸侵蚀能力.由于生成的C-S-H凝胶的塌陷和重组会细化孔结构,增大收缩应力,从而使干燥收缩率增大.  相似文献   

6.
基于基本的力学方法和耐久性方法研究了再生混凝土的抗压强度、抗碳化性能和抗冻性能.并采用压汞法对再生混凝土的孔结构进行研究.结果表明:再生混凝土的抗压强度比普通混凝土的抗压强度略有降低,孔隙率相比普通混凝土的孔隙率增加了49.5%;其抗碳化能力小于普通混凝土的抗碳化能力;再生混凝土的抗冻性远远小于普通混凝土的抗冻性,180次循环之后其质量损失率接近普通混凝土质量损失率的3倍.  相似文献   

7.
采用湿泡沫拌合法以再生微粉(RP)为主要原料制备了泡沫保温材料,通过测量泡沫的稳定时间、浆体的流动特性与凝结过程,结合试件的抗压强度、干密度、孔隙率以及导热系数等指标,探讨了浆体组成对泡沫存活状态的影响规律以及RP的最大掺量。结果表明:泡沫的稳定性与浆体的黏度、凝结过程存在适宜的匹配状态,当水固比为0.80、浆体黏度为1.7 Pa·s左右、终凝时间小于30 min时,预制泡沫具有较好的存活状态;RP的最大掺量可达70%,所制备泡沫保温材料的抗压强度为1.15 MPa,导热系数为0.118 W/(m·K),符合JG/T 266—2011泡沫混凝土标准A06等级要求。  相似文献   

8.
康晓明  李滢  樊耀虎 《硅酸盐通报》2019,38(4):1135-113
再生微粉是一种粒径小于0.16 mm,颗粒形状不规则,且SiO2、CaO、Fe2 O3及Al2 O3等氧化物含量较高的废弃混凝土粉末.本试验以砂浆抗压强度及微观结构为指标,研究了Ca(OH)2、Na2SiO3·9H2O化学激发剂以及600℃、800℃热处理等不同激发方式对再生微粉活性的激发效果.试验结果表明,再生微粉是一种惰性物质,未经处理前不适合替代水泥.化学激发剂及热处理均可激发再生微粉的活性,激发后的再生微粉可以作为掺合料部分替代水泥.在28 d龄期时,800℃的热活化效果最好,Ca(OH)2的激发效果次之,600℃的热活化效果最差.  相似文献   

9.
主要研究了固态激发剂制备地质聚合物样品中含水率对显微结构与抗折强度的影响,并对样品进行了XRD、SEM及EDS表征。结果表明:含水率为11%,混合料静置12 h时,抗折强度最大值为31.62 MPa。继续延长静置时间,样品抗折强度基本无变化;含水率过少或过多,均会引起样品结构中微裂纹的产生,使样品抗折强度下降。随静置时间的延长,养护后Na型针沸石相的特征衍射峰逐渐增强,形成一种硅铝摩尔比为1.13的单硅铝链状结构,其通过聚合生长方式朝不同方位穿插生长,最终形成针状聚集体形貌的沸石晶体,增大样品的抗折强度。  相似文献   

10.
本文选用水玻璃、氢氧化钠、硫酸钠、硅灰、铝酸钠以及复合激发剂,系统研究了不同类别激发剂对钢渣活性的影响和激发机理.利用SEM和XRD对不同激发剂制备的钢渣胶凝材料水化产物进行了微观表征和矿物相分析,比较了不同龄期活性激发钢渣胶凝材料的抗压强度.结果表明:激发剂能促使钢渣水化产物中水化硅酸钙凝 胶含量增加,促进钙矾石晶体生成,破坏钢渣中玻璃体网络结构,增大钢渣水化浆体的密实度.硅灰作为激发剂对钢渣活性的激发效果最好,制备的水泥试块28 d抗压强度能达15.9 MPa.  相似文献   

11.
采用玻璃粉部分替代矿渣制备碱激发胶凝材料,研究了玻璃粉含量(10%、20%、30%、40%,质量分数)对碱激发矿渣-玻璃粉基(AASG)泡沫混凝土性能的影响。对AASG泡沫混凝土流动性、抗压强度、干燥收缩、吸水率、软化系数和抗冻性进行了研究,并通过扫描电子显微镜和X射线衍射仪对机理进行了分析。结果表明:10%~40%掺量的玻璃粉使AASG泡沫混凝土的流动性提高了5.0%~25.6%;抗压强度随玻璃粉掺量的增加先增大再减小,玻璃粉掺量为20%时,7 d和28 d抗压强度最高,与对照组相比分别提高15.0%和23.8%;玻璃粉掺量为20%时,AASG泡沫混凝土的干燥收缩、吸水率、软化系数和抗冻性最佳;SEM分析发现,玻璃粉有助于孔结构的优化和提高微观结构的致密性;XRD分析表明,AASG泡沫混凝土的主要反应产物为 C-(N-)A-S-H和水滑石。将玻璃粉作为矿渣的替代品来制备AASG泡沫混凝土是可行的,为其在回填工程和固废利用提供理论支撑。  相似文献   

12.
基于镍渣的微集料效应研究了不同掺量的镍渣对混凝土抗压强度的影响,并采用压汞法和扫描电镜分别对镍渣混凝土的孔结构和微观形貌进行研究.结果表明:当镍渣掺量为20%时,混凝土的抗压强度最大,当镍渣掺量为50%时,混凝土抗压强度最小;0.50水胶比下不掺加镍渣混凝土、掺加20%镍渣混凝土和掺加50%镍渣混凝土在28 d的孔隙率分别为25.4%、22.3%和31.4%;掺加20%镍渣在28 d、60 d和90d的孔隙率分别为22.3%、19.8%和17.2%;掺加20%镍渣可有效降低混凝土孔隙率,细化孔径.  相似文献   

13.
采用白云岩和废砖粉为原料,研究了煅烧制度对废砖粉改性MgO膨胀剂的影响(方镁石和贝利特为主要煅烧产物,故简称PB),并测定了PB对砂浆变形和强度的影响.结果表明,在950~1050℃内,煅烧制度对PB中MgO含量无明显影响,提高煅烧温度或延长保温时间均有助于降低PB的f-CaO和石英含量,增加β-C2 S含量.掺PB砂浆试件的膨胀率随PB掺量的增加而增大,随着养护龄期的延长而增大.延长PB的保温时间或提高煅烧温度均使掺PB砂浆60 d之前的膨胀减缓.掺PB砂浆试件的抗压强度随PB掺量的增大而降低,随着养护龄期的延长,抗压强度降低百分数趋于减小.掺20%PB砂浆试件的28 d抗压强度降低百分数均小于10%;掺950℃煅烧1 h制备的PB砂浆试件在60 d之前具有最大的膨胀率并且抗压强度降低百分数最小.  相似文献   

14.
以偏高岭土、粉煤灰和石粉作为复合掺和料,结合混凝土孔结构、界面过渡区(ITZ)及水化热等表征研究多元复合掺合料对混凝土抗压强度及早期收缩性能的影响.研究结果表明:粉煤灰-偏高岭土-石灰石粉多元复合掺和料对混凝土抗压强度有促进作用,其28 d龄期强度增长10%以上,降低孔隙率,减少混凝土试样200 h收缩率13%~23%,且收缩率随着石粉含量增加和偏高岭土含量增加而降低.偏高岭土复合掺和料加速了水泥水化反应过程,促进了CSH凝胶的快速形成,密实了界面过渡区.  相似文献   

15.
白应华  潘秋阳 《硅酸盐通报》2022,41(6):2047-2052
本文将粉磨之后的煤矸石替代部分水泥掺入到混凝土中,通过物理发泡工艺制备煤矸石泡沫混凝土。采用FiJi-imageJ图像分析技术等对泡沫混凝土的孔径分布、平均孔径、气孔直径等进行表征,分析了煤矸石改善泡沫混凝土成孔的原因以及煤矸石粉磨粒径对泡沫混凝土抗压强度的影响。结果表明:当掺入粒径为45 μm的煤矸石粉时,泡沫混凝土的强度随着掺量的增加逐步下降,而掺入粒径为15 μm的煤矸石粉时,强度则随掺量的增加呈先上升后下降的趋势;在调节孔结构方面,粒径为45 μm的煤矸石粉优于粒径为15 μm的煤矸石粉,并在50%(质量分数)掺量下达到最优效果。  相似文献   

16.
硅灰和低水胶比会降低混凝土总孔隙率,但增加了混凝土自收缩,使其产生微裂纹。本文研究了掺入硅灰和减缩剂(SRA)对不同水胶比的混凝土自收缩和微观、宏观尺度孔径分布的影响。结果表明:掺入10%(体积分数)的硅灰会使混凝土自收缩增加27.3%~28.8%;而加入减缩剂使混凝土自收缩降低68.0%~85.1%,且对含有硅灰的混凝土样品降幅更大。此外,掺入硅灰和减缩剂可以使混凝土总孔隙率分别降低5.1%~6.0%和35.9%~39.7%,但硅灰会增大混凝土100 nm以下孔隙和100μm以上孔隙的体积占比,而减缩剂对这两类孔隙的体积则会起相反作用。同时,自收缩与100μm以上孔隙体积分数呈明显正相关关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号