首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
针对高温、高藻期原水较难处理的特点,采用臭氧/生物活性炭工艺进行了中试研究。试验结果表明,臭氧/生物活性炭工艺对有机物的去除效果明显,对CODMn的平均去除率为73.76%,对UV254的平均去除率为86.38%。高温条件下,大量生长的细菌随出水流出反应器,在投氯量为1 mg/L时可杀灭生物活性炭工艺出水中的大部分细菌,剩余细菌数〈10 CFU/mL,对细菌的杀灭率为99%,能够保证出水的微生物安全性。同时为避免细菌在活性炭表面大量繁殖而堵塞活性炭微孔,应适当缩短反冲洗周期,以3~4 d为宜。臭氧/生物活性炭工艺对藻类的平均去除率为75%,且在其出水中未检测出藻毒素。  相似文献   

2.
以黄河水库水为原水,探究前置式臭氧/生物活性炭流化床作为预处理工艺对净水效率的影响,并与作为末端深度处理的后置式臭氧/生物活性炭工艺进行对比。当采用前置式臭氧/生物活性炭作为预处理工艺时,出水中总有机碳(TOC)、生物可降解溶解性有机碳(BDOC)、氨氮浓度比后置式分别降低了11.8%、12.7%和72.1%,颗粒物数和浊度分别可降至(125±8) CNT/mL和(0.16±0.03) NTU;出水中溴酸盐、甲醛等氧化副产物均满足《生活饮用水卫生标准》(GB 5749—2022)要求。前置式臭氧/生物活性炭流化床和常规处理工艺对污染物的去除具有协同作用,各项出水指标全面优于后置式臭氧/生物活性炭工艺。这可以为微污染原水的高效净化研究和工程实践提供指导。  相似文献   

3.
梅林水厂臭氧/生物活性炭工艺的运行效果   总被引:5,自引:11,他引:5  
系统深入地研究了深圳市梅林水厂臭氧/生物活性炭工艺的运行效果,结果表明:①该工艺可有效去除常规工艺出水中的浊度和颗粒物,对浊度的平均去除率为24%(相对于砂滤出水),生物活性炭滤池出水的浊度<0.10 NTU,粒径>2μm的颗粒数可以降低到50个/mL.②对色度及嗅味的去除效果显著,出厂水的色度可以稳定保持在5倍以下;通常情况下,出厂水的嗅阈值<10,远低于砂滤出水的100.③对CODMn、UV254和TOC的去除效果较理想.经过主臭氧段后AOC浓度增加较多,但经过活性炭处理后又大幅降低,确保了出厂水的生物稳定性.④生物活性炭滤池出水中的细菌数大多数情况下低于主臭氧段出水,但是在某些情况下也会突然增加.⑤臭氧/生物活性炭工艺对贾第虫和隐孢子虫的去除效果明显.⑥活性炭上的生物量随着滤层深度的增加而减少,生物膜的生长会受水温、余臭氧浓度和反冲洗等因素的影响.⑦活性炭的吸附性能如碘值和亚甲兰值,会随着运行时间的延长而逐渐降低.⑧臭氧/生物活性炭工艺运行后增加制水成本约0.106元/m^3.  相似文献   

4.
生物活性炭滤池中微生物生态特性研究   总被引:1,自引:0,他引:1  
以微污染河水为原水进行了饮用水常规处理/生物活性炭滤池组合工艺试验,分别利用生物脂磷法和比耗氧速率法测定了生物活性炭滤池内的生物量和生物活性.结果表明,生物活性炭滤层中的生物量及生物活性沿水流方向逐渐减小,其中异养菌在滤层中不同高度处的生物量差异较小,硝化菌生物量沿滤层高度变化较大,沿水流方向急剧减小,这些变化均与滤层水中的可生物降解有机物及氨氮的基质营养水平有关.在进水氨氮与NO2--N浓度均较高的运行条件下,生物活性炭滤池的硝化反应完全,在滤层中硝酸菌对NO2--N的转化能力(以N计)大于亚硝酸菌对氨氮的转化能力,出水无NO2--N积累;当进水氨氮浓度较高时,硝化菌对溶解氧(DO)具有竞争优势,影响异养菌对有机物的去除.  相似文献   

5.
为解决北方地区某水厂低温水中氨氮去除难的问题,在现场开展了两级臭氧/生物增强活性炭工艺(O_3/BEAC)去除氨氮的中试研究。利用含一株能去除低温水中氨氮的新菌种HITLi7~T构成的优势功能复合菌剂,构建了生物增强活性炭(BEAC),分别考察了进水氨氮浓度、两级臭氧投加量、BEAC滤柱滤速及其反冲洗方式对该工艺去除氨氮效能的影响,并确定了最佳工艺运行参数。结果表明,随着进水氨氮浓度的变化,O_3/BEAC工艺对氨氮的去除率始终比O_3/BAC工艺高;当原水温度为0~2℃、氨氮为1.5 mg/L时,BEAC滤柱滤速为4.47 m/h,一级臭氧投加量为2 mg/L、二级臭氧投加量为1 mg/L,采用单独水洗10 min、水洗强度为8 L/(m~2·s)的反冲洗方式,可使O_3/BEAC工艺的氨氮去除效能达到最佳。  相似文献   

6.
嘉兴市某水厂采用臭氧-生物活性炭结合微絮凝强化过滤工艺,实现了出水浊度和2μm以上颗粒数分别稳定在0.1 NTU和30个/m L以下的良好效果。结合该水厂的净水工艺,考察了臭氧-生物活性炭工艺对微絮凝强化过滤工艺的影响。结果表明,臭氧-生物活性炭工艺去除了大量有机物,影响了胶体的稳定性,有利于微絮凝强化过滤工艺对浊度与颗粒物的去除。臭氧-生物活性炭工艺出水Zeta电位处于-5~0 m V范围内,粒径为5~20μm的大颗粒数量减少、粒径为2~5μm的小颗粒数量上升,总颗粒数和浊度上升,经微絮凝和砂滤池处理后,Zeta电位进一步上升直至接近于零,水中颗粒物与浊度被大幅去除。  相似文献   

7.
夏季台风及暴雨期间,该水厂原水水质波动较大,短时间内存在原水水质中细菌数量突发性陡增,日常的次氯酸钠消毒工艺对细菌控制存在潜在风险。针对该情况,对消毒系统进行升级改造,制定了优化消毒剂投加点、提高消毒剂浓度、联合消毒剂投加种类、升级消毒剂投加设备等一系列科学可行的改造措施,以期通过增加原水预氧化和提高次氯酸钠在水中CT值,消除出水微生物潜在安全风险。系统优化改造后,消毒效果明显提升,滤前、滤后、出厂水菌落总数显著下降,滤前平均菌落总数下降了32.5%,出厂水菌落总数由0~10CFU/mL稳定至0CFU/mL,远低于内控标准;对消毒副产物的控制能力进一步提升,三氯甲烷含量较改造前降低了25.7%;工艺改造对其他水质指标均未造成不良影响,出水水质满足《生活饮用水卫生标准》(GB 5749-2006)标准。  相似文献   

8.
臭氧/过滤/活性炭工艺深度处理污水厂二级出水   总被引:10,自引:1,他引:9  
采用臭氧/过滤/活性炭工艺深度处理济南市水质净化二厂的二级出水.结果表明,在臭氧投加量为3 mg/L、滤床和炭床的滤速均为6~12 m/h、各工艺段的接触时间为13 min的务件下,组合工艺对浊度、CODMn、NH4+-N和NO2--N均有一定的去除效果,而对NO3--N基本无去除作用;当原水的平均浊度、CODMn、NH4+-N和NO2--N分别为0.87 NTU、1.24 mg/L、1.78 mg/L、0.13 mg/L时,组合工艺出水的平均浊度、CODMn、NH4+-N和NO2--N分别可降至0.25 NTU、0.79mg/L、1.29 mg/L、0.05 mg/L.  相似文献   

9.
混凝/砂滤/超滤组合工艺对水中颗粒物质的去除   总被引:1,自引:1,他引:0  
主要研究了混凝/砂滤/超滤组合工艺对水中颗粒物的去除效果.试验结果表明:该工艺可有效去除水中浊度及颗粒物,膜出水浊度低于0.2NTU,水中粒径大于2μm的颗粒数量少于20个/mL.  相似文献   

10.
近年来,臭氧/生物活性炭工艺在国内得到广泛应用,在控制饮用水中消毒副产物的生成方面起到了重要作用。研究与生产实践表明,臭氧/生物活性炭运行参数的优化对其净水效能的发挥至关重要。针对江苏J水厂采用的H和X两个水质差异较大的水源,建立了中试装置,开展了以控制消毒副产物为目标的臭氧/生物活性炭运行参数优化研究。结果表明:随着臭氧投加量的增加,系统对H与X水源中三卤甲烷生成势(THMFP)的去除率先上升后逐渐平稳,对卤乙酸生成势(HAAFP)的去除率呈现先增加后降低的趋势;随着炭床停留时间的延长,生物活性炭工艺对THMFP、HAAFP的去除率均呈先上升后平稳的趋势。综合考虑THMFP和HAAFP的去除效能,优化后的臭氧/生物活性炭工艺运行参数如下:针对H水源,臭氧投加量为0. 5 mg/L,炭床停留时间为12 min;针对X水源,臭氧投加量为2. 0 mg/L,炭床停留时间为12 min。  相似文献   

11.
结合水厂水处理工艺及活性炭深度处理装置,探讨了生物活性炭滤池出水中颗粒物数量的变化及粒径分布规律。结果表明,在过滤周期内活性炭滤池出水颗粒物数量与浊度会出现相似的变化规律,二者之间相关性较好,但活性炭滤池出水浊度的变化滞后于颗粒物数量的变化。生物活性炭滤池过滤初期,滤后水中大于2μm的颗粒物数量可达到111个/mL,50min后数量降至50个/mL以下。生物活性炭滤池出水中大于2μm的颗粒物主要由粒径为2~7μm的颗粒物组成。  相似文献   

12.
针对松花江水源水质特点,采用臭氧/生物活性炭工艺强化常规处理工艺,对松花江微污染原水进行深度处理。中试结果表明,臭氧预氧化具有助凝作用,可节省混凝剂用量,在试验条件下,当预臭氧投量为1.0 mg/L时,可节省12%以上的混凝剂量;主臭氧氧化工艺的设置可以提高后续活性炭滤池的净水效果;在低温低浊期出水氨氮浓度难以达标,可采用加氯的方法来去除氨氮,最佳投氯量为4.5 mg/L。长期运行效果表明,采用臭氧/生物活性炭工艺强化常规工艺,所需臭氧投加量较低,系统运行稳定,抗冲击负荷能力较强,即使在冬季低温低浊期仍可稳定达标。  相似文献   

13.
如何经济、有效地去除难降解有机物是当前水处理领域的难题之一。针对臭氧+FlopacTM工艺对化工废水难降解有机物的去除效果开展中试研究,并应用于具体工程实例。中试结果表明,增加臭氧投加量可有效提高化工废水的可生化性,当臭氧投加量由35 mg/L增加到75mg/L时,出水B/C值由0. 13提高到0. 17,对COD的去除率由27%提高到38%,出水COD浓度稳定在60 mg/L以下。实际工程运行数据表明,臭氧+Flopac~(TM)工艺可有效去除化工废水中的难降解有机物,出水水质稳定,臭氧投加量为65 mg/L、Flopac~(TM)平均滤速为6. 7 m/h时,COD去除率达到44%。  相似文献   

14.
针对南方某湖泊水源净水厂4月—9月易发原水致嗅物质2-MIB超标问题,进行了2-MIB去除规律的生产性试验。结果表明,预臭氧工艺对2-MIB的平均去除率可达68.6%,不采用其他预处理工艺时,混凝沉淀和砂滤对2-MIB没有去除效果。使用预臭氧和混凝前加氯方式联合预处理时,混凝沉淀会抵消预臭氧对2-MIB的去除效果,后续砂滤单元对2-MIB的去除率为15%~35%,尽管缩短了砂滤池的反冲洗周期,但对2-MIB的去除率提高不超过5%。后臭氧/生物活性炭工艺对2-MIB的去除率随着臭氧投加量的增加而增大。当水厂负荷不超过80%、原水中2-MIB的浓度不超过911 ng/L时,通过预臭氧、前加氯、常规处理与后臭氧/生物活性炭单元的有机结合,可控制出厂水中2-MIB浓度低于10 ng/L。  相似文献   

15.
模拟太湖水中阿特拉津浓度突增的情况,研究了臭氧氧化、生物活性炭吸附降解及臭氧/生物活性炭联用工艺对其去除效果,并初步分析了各工艺参数的影响.结果表明,单独臭氧氧化对阿特拉津的去除率约为31%,而生物活性炭工艺的去除率则可达到73%;臭氧氧化可强化生物活性炭对阿特拉津的去除效果,两者联用对阿特拉津的去除率高达95%;破碎炭上的生物量明显高于柱状炭,针对水中阿特拉津的去除,破碎炭更为适用;臭氧/生物活性炭工艺的炭层厚度建议采用150 cm,此值可在保证阿特拉津去除效果的同时,保障出水水质安全性.  相似文献   

16.
以某水厂砂滤工艺出水为研究对象,采用膜前投加高锰酸钾控制膜污染,探究膜前投加高锰酸钾缓解膜污染的机理以及对出水水质的影响。结果表明,高锰酸钾的氧化性造成膜出水中亲水性有机物和分子质量分布在3~10 ku区间的有机物含量增多;投加0.3 mg/L的高锰酸钾能够有效控制膜污染,过量则会造成出水锰离子浓度超标;膜出水中胶粒的Zeta电位由负变正,并且电量减小,这有利于胶粒的沉淀。  相似文献   

17.
针对臭氧/生物活性炭工艺在应用过程中可能存在的微生物安全性问题,通过中试和生产性试验从病原微生物、微生物群落、浊度和颗粒数、AOC等四个方面进行了系统评价。结果表明,臭氧/生物活性炭工艺在运行过程中形成了丰富的微生物群落,但在活性炭上和出水中均未检测到病原微生物,因此该工艺不存在由病原微生物引起的微生物安全问题,但是应该引起足够重视。臭氧/生物活性炭工艺能够提高出水水质的生物稳定性,并进一步降低了砂滤池出水的浊度和颗粒数,有利于保障微生物安全性,但要加强对初滤水的管理。  相似文献   

18.
二级出水臭氧消毒的研究   总被引:3,自引:0,他引:3  
本文研究了污水回用的臭氧消毒工艺,包括臭氧在水中的衰减、二级出水的需臭氧量、接触时间和臭氧投量与微生物灭活之间的关系,并提出相应的数学模型。实验结果表明,当臭氧投量为15mg/L左右、接触时间为15min时,耐热大肠杆菌(thermo tolerant coliform TTC)和粪链球菌(fecal streptococcus FS)可以降低2—3个数量级。  相似文献   

19.
对使用同一水源的两条相同制水工艺分别采用次氯酸钠和液氯消毒,对比研究了两种消毒剂的消毒效果及消毒副产物的生成特性。结果表明,两种消毒剂对菌落总数和异养菌的去除效果都较好,出厂水的菌落总数和异养菌数都未超过100 CFU/mL,微生物安全性可以得到保障。两种消毒剂对三氯甲烷和四氯化碳含量的控制水平均可达到《生活饮用水卫生标准》(GB5749—2006)的要求。液氯消毒出水中的三氯甲烷和卤乙酸含量比次氯酸钠消毒出水中的略高,四氯化碳含量基本相同。采用次氯酸钠替代液氯消毒可有效降低水厂生产安全风险,同时在保证消毒效果的前提下有利于降低水中消毒副产物的生成水平。  相似文献   

20.
臭氧/生物活性炭工艺的运行优化研究与工程示范   总被引:1,自引:0,他引:1  
针对臭氧/生物活性炭(O3/BAC)工艺在珠江下游地区应用中存在的容易孳生微型生物、出水pH值降低、臭氧投加量难以量化等问题,开展了运行优化研究,并将技术成果应用于规模为100×104m3/d的示范工程。O3/BAC工艺运行优化示范工程重点示范了炭滤池原位酸碱改性技术及石灰优化调节出厂水pH值、臭氧投加量优化、炭滤池反冲洗方式优化3项关键技术成果。示范工程自2012年1月建成投产至今运行稳定,出水浊度≤0.2 NTU,COD Mn≤2 mg/L,pH值稳定在7.2~7.5,并显著提高了出水的生物安全性。该示范工程的建设,建立了该地区饮用水深度净化工艺保障体系,实现了O3/BAC工艺运行控制系统的全面优化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号