首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
研究了不同水灰比对水泥砂浆试件在10℃下抗硫酸盐侵蚀的性能的影响,采用0.36与0.5两种水灰比的普通硅酸盐水泥、中抗硫水泥以及加入矿粉与硅灰的水泥砂浆试件,测试各试样在(10±1)℃的3%Na2SO4溶液中浸泡后的强度变化情况,综合考虑强度与抗蚀系数对砂浆抗硫酸盐侵蚀性能进行评价.结果表明:在10℃下0.36水灰比试件强度高于0.5水灰比试件,抗硫酸盐侵蚀性能随着水灰比的降低而提高;加入矿物掺合料明显改善了水泥砂浆抗硫酸盐侵蚀性能,并且硅灰的含量越高效果越明显.砂浆抗硫酸盐侵蚀性能15%矿粉+3%硅灰>15%矿粉+1%硅灰>中抗硫水泥>普通硅酸盐水泥.  相似文献   

2.
在低温(10 ℃)-干湿循环双重环境下,对不同水灰比不同胶凝材料方案的水泥砂浆试件的抗硫酸盐侵蚀性能进行了试验研究,其中水灰比采用0.5和0.36,胶凝材料分别为普通硅酸盐水泥、中抗硫酸盐硅酸盐水泥和在普通硅酸盐水泥中分别掺入15%矿粉+1%硅灰和15%矿粉+3%硅灰.结果表明:在低温(10 ℃)-干湿循环双重条件下,既存在化学侵蚀又存在物理侵蚀,但是以物理侵蚀为主;通过降低水灰比或者使用抗硫酸盐硅酸盐水泥能显著提高砂浆抗硫酸盐侵蚀性能;在不同的水灰比下,复掺矿粉和硅灰会得到不同的效果,在低水灰比时能提高抗硫酸盐侵蚀的性能,在高水灰比时反而会降低抗硫酸盐侵蚀的性能.  相似文献   

3.
研究了不同水胶比水泥砂浆试件在低温干湿循环条件作用下的抗硫酸盐侵蚀性能.试验制作了0.36与0.5两种水胶比的普通硅酸盐水泥、中抗硫水泥以及矿粉-硅灰复掺的水泥砂浆试件,检测了试件标养28 d后的孔结构及各试件在(5±1)℃的3%Na2 SO4溶液中干湿循环后的强度、动弹性模量变化情况,对砂浆在低温干湿循环条件下的抗硫酸盐侵蚀性能进行了评价,并分析了检测指标间的相关性.结果表明:低温干湿循环条件下,0.5水胶比砂浆抗硫酸盐侵蚀性能低于0.36水胶比砂浆,抗硫酸盐侵蚀性能随着水胶比的降低而提高;低水胶比砂浆复掺矿粉-硅灰后抗低温干湿循环条件下的硫酸盐侵蚀性能提升明显;两个水胶比砂浆的相对动弹模均与抗压强度高度相关.  相似文献   

4.
在硫酸盐侵蚀环境下,混凝土内部硫酸盐腐蚀产物的生成是造成混凝土体积膨胀破坏和耐久性劣化的主要原因。通过测定不同硫酸盐侵蚀龄期(30 d,60 d,90 d,120 d,150 d,180 d),不同水灰比(0.4,0.5,0.6)下普通硅酸盐水泥和高抗硫酸盐水泥砂浆的抗折强度,研究硫酸盐侵蚀对砂浆抗折强度的影响。试验结果表明,通过5%硫酸钠溶液长期浸泡试验,水泥砂浆试件抗折强度随着侵蚀龄期的增加呈先增大后下降的变化趋势;对于普通硅酸盐水泥试件来说,水灰比越大,抗折强度开始出现下降的龄期越早;高抗硫酸盐水泥砂浆试件出现强度下降的龄期较普通硅酸盐水泥砂浆晚,且0.4水灰比高抗硫酸盐水泥砂浆试件至侵蚀后期,其抗折强度均未出现明显下降,说明高抗硫酸盐水泥较普通硅酸盐水泥具有较好的抗硫酸盐侵蚀性能。  相似文献   

5.
焦向科  张一敏 《硅酸盐通报》2014,33(12):3097-3102
以某低活性铝硅质尾矿作为硅铝原料(基质),分别与四种不同的铝校正料复合,在碱硅酸盐溶液激发作用下制备矿物聚合材料;同时将该尾矿与硅灰以及钙质原料(包括矿渣和钢渣)复合制备“免配碱激发剂溶液型”矿物聚合材料.对各试样的抗化学侵蚀性能进行测试,并与普通硅酸盐水泥砂浆试样进行对比;在微观上借助SEM和FTIR对代表性试样进行表征.结果表明,以铝酸盐水泥为铝校正料制备的矿物聚合材料试样经H2 SO4溶液侵蚀后有较多沸石相生成,其抗化学侵蚀性能较为良好;普通硅酸盐水泥砂浆试样经硫酸盐侵蚀后其初期强度有所提高,但后期强度可能会因钙矾石的增多而降低.  相似文献   

6.
《粉煤灰》2015,(5)
在硫酸盐侵蚀环境下,混凝土内部硫酸盐腐蚀产物的生成是造成混凝土体积膨胀破坏和耐久性劣化的主要原因。通过测定不同硫酸盐侵蚀龄期,不同水灰比下普通硅酸盐水泥和高抗硫酸盐水泥砂浆的膨胀率,旨在研究硫酸盐侵蚀对砂浆膨胀率的影响。试验结果表明,在5%的硫酸钠溶液中长期浸泡的不同试件,其膨胀率均呈现初期增长较快,随后经过一个平稳增长的阶段。在浸泡120 d后,普通硅酸盐砂浆试件0.5和0.6水灰比会由于硫酸盐侵蚀造成的内部损伤,膨胀率出现骤增,而抗硫酸盐水泥由于其较好的抗硫酸盐侵蚀性使其膨胀率仍保持缓慢增长;普通硅酸盐水泥试件在硫酸钠溶液中浸泡150 d后,0.4、0.5和0.6水灰比试件膨胀率分别达到0.162%、0.383%和0.491%,分别为抗硫酸盐水泥砂浆试件膨胀率的1.0倍、2.3倍和2.8倍。说明硫酸盐侵蚀加速了砂浆的体积膨胀速率,同时高抗硫酸盐水泥较普通硅酸盐水泥具有较好的抗硫酸盐侵蚀性能。  相似文献   

7.
马英  李淯伟  邰安 《硅酸盐通报》2024,(4):1380-1387
本文研究了硫酸镁作用下掺珊瑚砂粉(CSP)和辅助胶凝材料(SCMs)砂浆的抗硫酸镁侵蚀性能。在5和20℃硫酸镁溶液中侵蚀至365 d,通过外观、长度变化、抗压强度,结合X射线衍射谱和傅里叶变换红外光谱分析砂浆的抗硫酸镁侵蚀性能。发现在5℃的硫酸镁溶液中侵蚀至365 d时,掺CSP砂浆发生严重劣化。掺20%(质量分数)CSP的抗硫酸盐硅酸盐水泥比掺20%(质量分数)CSP的普通硅酸盐水泥表现出更好的抗硫酸镁侵蚀性能。在5℃下粉煤灰和矿渣有助于改善掺CSP砂浆的抗硫酸镁侵蚀性能,然而在20℃下硅灰降低其抗硫酸镁侵蚀性能。在5℃下掺CSP砂浆主要发生镁盐和碳硫硅钙石型硫酸盐侵蚀并伴随少量石膏生成,在20℃下主要发生镁盐和石膏型硫酸盐侵蚀。  相似文献   

8.
本文研究了普通硅酸盐水泥掺量及不同种类和掺量的矿物掺合料对硫铝酸盐水泥性能的影响.结果表明普通硅酸盐水泥掺量小于60%时,普硅水泥-硫铝酸盐水泥体系(OPC-SAC体系)的胶砂强度随着普通硅酸水泥掺量的增加而降低,普通硅酸盐水泥掺量大于60%时,OPC-SAC体系的胶砂强度随着普通硅酸水泥掺量的增加而增大.并且对早期强度的影响较大.在硫铝酸盐水泥体系中掺入矿渣、粉煤灰和硅灰时,其胶砂强度随着掺量的增加而降低,在相同掺量下,矿物掺合料对强度的贡献率为:硅灰>矿粉>粉煤灰,对凝结时间的影响强弱为:硅灰>矿粉>粉煤灰.  相似文献   

9.
对于低温环境下普通硅酸盐、抗硫酸盐水泥砂浆试件的硫酸盐侵蚀情况进行了试验研究,建立了两阶段侵蚀破坏模型来反应温度对硫酸盐侵蚀速率的影响.通过将不同水泥品种不同水灰比试件浸泡在5℃、10℃、20℃环境下3%硫酸钠溶液中,以抗折强度为评价指标分析不同温度下硫酸盐侵蚀速率.结果表明:普通硅酸盐水泥、抗硫酸盐水泥砂浆试件随着温度的降低,受到的硫酸盐侵蚀逐渐加剧.抗折强度降低速率随着温度的降低而加快,同时降低水灰比可以提高水泥砂浆抗硫酸盐侵蚀能力.  相似文献   

10.
根据国家标准对海工水泥原材料组成的要求,本文以粉煤灰、矿粉、硅灰为混合材与硅酸盐水泥熟料、石膏复合,通过水泥砂浆物理性能试验、抗渗性能试验、抗硫酸盐侵蚀试验和混凝土氯离子扩散系数试验,优化、确定了海工水泥合理的原材料组成范围。试验结果表明,当熟料掺量≥33%,硅灰掺量≤3%时,所制备的海工水泥的力学性能满足国家标准42.5级海工水泥的要求;以33%的熟料、7%的石膏、17%的粉煤灰、40%的矿粉和3%的硅灰制备的海工水泥具有较好的早期、后期强度和良好的耐久性能。XRD和SEM分析结果表明,与普通硅酸盐水泥相比,海工水泥水化体系中AFt含量多,可提高水泥石的致密度,减小孔隙率,使水泥硬化体具有优异的力学性能和耐久性能。  相似文献   

11.
采用比强度分析法对低温环境下矿粉、硅灰复合矿物掺合料的火山灰效应进行了研究.结果表明:随着温度的降低,砂浆试件的强度逐渐降低,加入复合矿物掺合料提高了砂浆的强度;通过对比180 d时砂浆强度发现加入15%矿粉+3%硅灰对低温环境下砂浆强度提升最大,0.5水灰比试件在10℃下强度提高了9%,火山灰效应贡献率为25.1%;0.36水灰比试件在10℃下强度提高了6%,火山灰效应贡献率为22.5%,5℃下强度提高了5%,火山灰效应贡献率为21.5%.  相似文献   

12.
通过测试不同品种水泥和不同岩性砂制作的砂浆在酸性侵蚀环境下强度和质量等物理性能的变化,研究胶凝材料和砂的岩性对砂浆耐酸性能的影响。结果表明,在pH=2的硝酸溶液中,普通硅酸盐水泥(含有13%矿物掺合料)具有比高抗硫酸盐水泥稍好的耐酸性能,快硬硫铝酸盐水泥的耐酸性能最差。不同岩性砂对砂浆耐酸性能影响不明显,而砂粒径大小对砂浆耐酸性有较大影响。同时采用X射线-荧光分析(XRF)、扫描电镜(SEM)、X射线衍射仪(XRD)等微观测试手段探讨了酸性腐蚀机理。  相似文献   

13.
研究了不同水胶比混凝土试件在(20 ±2)℃全浸泡作用下的抗硫酸盐侵蚀性能.试验制作了0.32与0.36两种水胶比的普通硅酸盐水泥、中抗硫水泥以及矿粉-硅灰复掺的混凝土试件,试件标养28 d后,测定了各试件在(20 ±2)℃的3%Na2SO4溶液中全浸泡侵蚀的抗压侵蚀系数、相对动弹性模量,并且测定了侵蚀240 d后混凝土的含气量和连通孔隙率,对混凝土在(20 ±2)℃下的抗硫酸盐侵蚀性能进行了评价.结果表明:在(20 ±2)℃全浸泡作用下,(1)混凝土抗硫酸盐侵蚀性能E>A>B,中抗硫水泥主要通过限制C3A的含量,进而改善混凝土抗硫酸盐侵蚀性能,不一定在任何环境下都适用;(2)0.36水胶比混凝土抗硫酸盐侵蚀性能低于0.32水胶比混凝土,抗硫酸盐侵蚀性能随着水胶比的降低而提高;(3)低水胶比混凝土复掺矿粉-硅灰后抗硫酸盐侵蚀性能得到显著的提高;(4)混凝土抗压侵蚀系数和相对动弹性模量高度相关,侵蚀240 d后,不同配比混凝土的含气量与连通孔隙率趋势极为接近,相关系数为0.93,因此可以合理选择试验评价指标,减少原材料浪费和试验工作量.  相似文献   

14.
混凝土建筑物受硫酸盐侵蚀现象比较严重。为了防止硫酸盐对混凝土建筑物侵害,通过对不同水泥、两种掺合料(磨细矿粉、粉煤灰)不同比例条件下的砂浆抗蚀系数、自由膨胀率的试验,得出混凝土的抗硫酸盐性能有较大提高的比例为:单掺磨细矿粉掺50%或60%;共掺粉煤灰20%和磨细矿粉30%。由此可见,通过砂浆试验推出大掺量掺合物(磨细矿粉、粉煤灰)混凝土具有较优的抗硫酸盐侵蚀性能。  相似文献   

15.
以煅烧铝土矿选尾矿为硅铝质原料,以矿渣微粉为促硬剂,以水玻璃为激发剂,制备得到了硅铝聚合材料。运用X射线衍射、扫描电镜、热分析研究了硬化浆体的反应产物及其微观形貌、热性质。通过观察3%硫酸钠溶液、3%硫酸镁溶液、5%硫酸溶液、5%盐酸溶液对砂浆试样外观、质量、强度的影响,研究了其抗化学侵蚀性能,并比较了其与铝酸盐水泥、快硬早强硫铝酸盐水泥、中抗硫酸盐硅酸盐水泥及矿渣硅酸盐水泥的区别。结果表明:反应并不生成晶体物质,而是无定形态的铝硅酸盐;硬化体中呈现片层状显微形貌的物质能够吸附水分,从而在灼烧过程中表现为脱水吸热及质量损失;该片层状物质随着龄期的延长而变得愈发细小和复杂,进而在宏观上表现为强度增长及脱水温度升高;硅铝聚合砂浆分别经3%硫酸钠溶液、3%硫酸镁溶液浸泡28d后,与各水泥砂浆试样比较,其不仅外观完整,而且强度并没有下降,反而具有几乎相同的强度增长,即说明其具有更优异的抗硫酸侵蚀性能;硅铝聚合砂浆与各水泥砂浆经稀酸溶液浸泡28d后,前者不仅能保持原始外观,而且表现为更低的质量及强度损失。  相似文献   

16.
王馨  屈雅  王琦  杜钊 《水泥工程》2010,(5):19-21,30
主要研究在水玻璃激发条件下,矿渣、粉煤灰、水泥按一定的配合比配制成复合胶凝材料,并对这种复合胶凝材料的抗硫酸盐侵蚀性能进行研究。试验采用正交实验法,以获得高抗硫酸盐侵蚀能力的复合胶凝材料的最优配比;并采用XRD、SEM和MIP等手段对其机理进行了研究探讨。结果表明:(1)掺加矿物掺和料的水泥比普通硅酸盐具有更好的抗硫酸盐侵蚀性能;(2)试验条件下的高抗硫酸盐侵蚀能力的复合胶凝材料的最佳配比为:矿物掺合料与水泥的掺量比为7:3,矿物掺合料中矿渣与粉煤灰掺量比为4:6,水玻璃掺量与矿物掺合料总量比为7%。  相似文献   

17.
介绍一种大掺量粉煤灰砂浆掺合料 -砂浆宝。使用该砂浆掺合料 ,在砂率相同的情况下 ,粉煤灰可等量取代 5 0 %的普通硅酸盐水泥和 10 0 %的石灰 ,该砂浆与传统普通硅酸盐水泥砂浆、水泥石灰混合砂浆相比具有相同的性能 ,成本则远低于传统砂浆。  相似文献   

18.
通过与硅酸盐水泥对比,研究聚合物改性硫铝酸盐水泥砂浆的力学性能、柔韧性和干缩性能,并采用扫描电子显微镜观测水泥基聚合物改性材料的形态结构。结果表明:聚合物胶粉硫铝酸盐水泥砂浆的性能较普通水泥砂浆有明显的改善,尤其抗折强度更为突出。聚合物胶粉均能显著降低水泥砂浆的压折比,改善砂浆柔韧性,尤其是改善硫铝酸盐水泥砂浆的效果较明显。由于硫铝酸盐水泥的微膨胀性能,使其砂浆的干缩性能优于硅酸盐水泥砂浆。  相似文献   

19.
为考察白云石对水泥基材料抗硫酸盐侵蚀性能的影响,本文采用10%、20%、30%(质量分数,下同)白云石掺入水泥净浆与水泥砂浆试件中,在低温条件下浸泡于5%硫酸镁和5%硫酸钠溶液中,并进行硫酸盐侵蚀试验。定期观察试件的宏观形貌变化,并定量分析其侵蚀产物。测定水泥砂浆试件抗折强度与抗压强度并进行宏观分析,以此得出不同种类硫酸盐对试件生成碳硫硅钙石的影响。采用热力学模拟探究白云石对水泥胶凝体系产物的影响。结果表明:当白云石掺量为10%~20%时,能抑制水泥基材料中碳硫硅钙石的生成,水泥基材料的抗硫酸盐侵蚀性能有较大提高,水泥砂浆试件抗折强度有明显改善,这与热力学模拟结果基本一致。  相似文献   

20.
以粉煤灰、矿粉为混合材与硅酸盐水泥熟料、石膏复合,通过内掺硅灰制备海工水泥,研究硅灰掺量对海工水泥物理性能和混凝土耐久性能的影响。试验结果表明,掺入硅灰能明显增加海工水泥的标准稠度用水量,延长凝结时间,且与硅灰掺量呈正相关;当硅灰掺量≤4%时,水泥砂浆的抗压强度和抗折强度均随硅灰掺量的增加而增大,耐久性也逐渐提高;当硅灰掺量4%时,其强度和耐久性能的增加效果并不明显。颗粒分析结果表明,所制备海工水泥在0~30μm粒径范围内的比例高于普通硅酸盐水泥,颗粒分布更合理。XRD分析结果表明,适宜的硅灰掺量(4%)能充分发挥其火山灰效应和物理填充作用,提高水泥石的致密度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号