首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
攀枝花钒钛磁铁矿高温还原中的重要物理化学问题   总被引:5,自引:2,他引:3  
本文从物理化学方面探讨了钒钛磁铁矿冶炼过程中出现的炉渣粘稠及泡沫渣问题并认为高温还原治炼过程中,在氮气和还原碳存在的情况下,钛的碳、氮化物的生成是难以避免的。 提出了:⑴碳化钛的形成机理是TiO_2→Ti_3O_5→TiC_(0.87)O_(0.33)→TiCxOy→TiC;⑵高钛渣粘稠的实质是高温亲液胶体的形成;⑶泡沫渣形成的原因是炉渣大量夹铁、渣中FeO及TiO_2被C还原的结果。  相似文献   

2.
高钛型炉渣中低价钛总量的测定   总被引:1,自引:0,他引:1       下载免费PDF全文
高炉冶炼高钛型钒钛磁铁矿的一个特殊问题是炉渣变稠、渣中大量夹铁以及形成泡沫渣等.国内外的一些研究者认为,此现象是高温条件下渣中FeO和TiO_2被碳还原所致.为研究还原机理提出了TiO和Ti_2O_3的测定问题.关于TiO和Ti_2O_3的测  相似文献   

3.
钒钛矿高炉冶炼钛、硅还原的热力学分析   总被引:1,自引:0,他引:1  
本文根据攀钢高炉的现场数据,通过热力学计算得出:渣中(TiO_2)被固体碳还原生成铁中〔Ti〕的临界温度为1400多度。在高炉冶炼条件下,碳化钛的形成机理,除TiO_2→Ti_3O_5→TiC_(0.67)O_(0.33)→TiCxOy→TiC外,还存在(TiO_2)→〔Ti〕→TiC这样一种途径。此外,用热力学的观点解释了配加普通天然块矿后,进一步造成“物理热、化学凉”。是使炉渣性能改善、各项技术指标提高的原因。  相似文献   

4.
结合SEM、TG-DSC和X-ray衍射分析方法研究了TiO_2-WO_3-NiO-C体系还原过程的物相演变。结果表明:混合粉料中部分NiO首先还原成金属Ni,WO_3和剩余NiO在低温下结合形成结构较稳定的NiWO4固溶体。继续升高反应温度,NiWO4经碳热还原反应形成Ni和WC。TiO_2的晶体结构在加热过程中由锐钛型转变为晶红石型,当还原产物TiC形成后,TiC和WC固溶形成(Ti,W)C。  相似文献   

5.
以钛铁矿、焦炭粉和高纯氮气为原料,通过热力学计算和试验研究了真空炉内碳热还原氮化过程相转变和产物的C含量。首先采用热力学计算软件HSC分析了钛精矿碳热还原氮化的反应历程;根据热力学分析结果进行了不同反应温度条件下的试验研究;最后对反应产物进行了XRD和SEM-EDS分析。研究结果表明:TiN和TiC的生成主要由Ti_3O_5→TiN和Ti_3O_5→TiC控制,两者转化温度分别为:1 231℃和1 319℃;试验研究表明:在1 200℃时,产物中就有TiC_xN_(1-x)的生成,整个升温过程中没有出现TiC和TiN的单相,并且随着反应温度升高,TiC_xN_(1-x)中C原子含量逐渐增大,当反应温度从1 200℃升高到1 350℃时,生成物TiC_xN_(1-x)的C原子含量由9.8%升高到36.273%,N原子的质量分数42.14%降到18.456%。  相似文献   

6.
为明确含钛高炉渣对炉缸用耐火材料侵蚀的影响,通过动态侵蚀试验研究了高炉炉缸用碳复合砖和刚玉砖在CaO-SiO_2-MgO-Al_2O_3-Cr_2O_3-TiO_2渣中的侵蚀行为。结果表明:炉渣向碳复合砖基体的渗透、碳复合砖中的组元在渣中的溶解以及碳复合砖与炉渣的反应等综合作用最终导致了碳复合砖的破损。刚玉砖在含TiO_2炉渣中的侵蚀主要由炉渣的渗透以及刚玉砖的溶解造成。XRD结果表明:碳复合砖侵蚀面的物质主要由C、Al_2O_3、黄长石、镁铝尖晶石、铝酸钙、Cr_7C_3和TiC组成,刚玉砖侵蚀面物相主要由Al_2O_3、SiC、镁铝尖晶石、黄长石和TiC组成。通过对比碳复合砖和刚玉砖在含TiO_2炉渣中的侵蚀行为,可以发现由于碳复合砖中存在较多的碳和碳化硅等物质,使得碳复合砖具有较好的抗渣侵蚀能力。  相似文献   

7.
以钒钛铁精矿和煤粉为原料,在空气气氛下通过碳热还原法制备Fe-Ti(C,N)复合粉末。通过还原产物X射线衍射分析,对空气气氛下还原温度和配碳量对钒钛铁精矿碳热还原的反应过程以及物相演变进行了研究。结果表明,随着温度的升高,反应过程中的物相演变过程为:Fe_3O_4→Fe,Fe TiO_3→Fe Ti_2O_5→Ti_4O_7→Ti_2O_3→Ti(C,N),配碳量是使反应体系处于气相平衡的关键因素。在配碳量25%时,体系内CO、CO_2和N2的分压不能达到平衡或维持反应平衡的时间很短,钒钛铁精矿不能被还原或只能部分被还原为Ti(C,N)。在还原温度1 500℃,还原时间30 min,配碳量30%的条件下,还原产物中Ti C_(1-x)N_x的颗粒尺寸约为3μm,Ti C_(1-x)N_x的C/N值为0.491 5,x=0.67。  相似文献   

8.
中国超过50%钛资源在高炉冶炼过程中进入炉渣,渣中TiO2的质量分数高达20%~30%,是一种高附加值二次资源,但在对该资源综合利用过程中,始终未能解决经济提取、硅钛难分,二次污染严重等问题.在热力学理论指导下进行真空碳热还原-酸浸联合工艺处理含钛高炉渣制备TiC研究.研究表明,碳热还原温度越高或相同温度下真空度越高越有利于炉渣中各成分还原;随着真空度增加碳热还原温度要求降低;当温度达到1 573K,真空度为1 Pa,可将SiO2还原得到具有高蒸气压的SiO、MgO被还原为Mg蒸气而离开体系,可实现渣中硅镁与钛彻底分离;真空碳热还原含钛高炉渣制备TiC的最佳条件:还原温度1673 K,炉渣粒度75μm占80%,渣碳质量比100∶38.  相似文献   

9.
刘永新 《四川冶金》1993,15(3):20-23,35
本文讨论高钛低铝R-26合金电渣重熔过程中钛的烧损问题。通过渣中加TiO_2粉量的变化,重熔过程中补加Al粉和电极粉的方法熔炼电渣锭,并对其Ti、C含量进行化学分析,与电极棒成份进行对比分析,从而得出起保钛作用的是Ti_3O_5,并非TiO_2;Al粉的加入起到间接保钛的作用;补加的少量电极粉在重熔初期低温时引起少量增碳,而在高温下则与TiO_2反应生成Ti_3O_5。  相似文献   

10.
使用铝粉还原废弃脱硝催化剂中的TiO_2,选择SiO_2-TiO_2-CaO-Al_2O_3-CaF_2-Na_2O渣系,随着还原过程的进行,渣中TiO_2逐渐减少Al_2O_3逐渐增多,还原产物钛传质进入铁液形成铁钛合金,实现废弃脱硝催化剂中钛元素的资源化回收。运用热力学软件Factsage 7.1的Equilb模块计算得出反应完全后渣成分为SiO_2 3%,CaO 15%,CaF_2 44%,Na_2O 2%Al_2O_3 35%,钢中钛含量可达2.5%。在相图中反应炉渣成分变化的路径上依次选取A、B、C、D点,运用Factsage 7.1的Viscosity模块对还原过程炉渣黏度进行计算,得出还原过程中炉渣黏度均小于0.03 Pa·s,具有较好的流动性。根据试验以及能谱和XRD分析,钢中钛含量达到1.67%,为Equilb模块计算值的67%。渣中大量TiO_2被还原进入钢中,基本实现了废弃脱硝催化剂中钛元素的直接合金化。  相似文献   

11.
对TiO_2和Nb_2O_5混合球磨料采用真空碳热还原法制得了TiC和NbC,通过正交实验研究了Nb_2O_5、TiO_2和活性炭混合料的摩尔配比、混料球磨时间、还原温度和还原时间对制备TiC和NbC的影响,运用激光粒度仪、X射线衍射仪(XRD)以及扫描电子显微镜(SEM)对混合料和还原产物的粒度、物相及微观形貌进行分析。实验结果表明,各因素对还原程度的影响由大到小顺序为:还原温度混合料球磨时间混合料Nb_2O_5∶TiO_2∶C摩尔配比还原时间,优化实验条件为:混合料Nb_2O_5∶TiO_2∶C摩尔配比1∶3∶20,混合料球磨时间10 h,还原温度1 600℃,还原时间2 h。在该条件下,Nb_2O_5和TiO_2混合料的还原率达到93.90%。真空碳热还原TiO_2和Nb_2O_5混合料比单独还原Nb_2O_5所需的温度更低,且不需要二次还原,即可得到较纯的TiC和NbC。另外,增加TiO_2和活性炭含量,还原产物的粒度更细,可达到纳米级。  相似文献   

12.
在CaO-CaCl_2-NaCl熔盐中,以高钛渣和石墨粉混合物料为阴极,石墨棒为阳极,电解制备出了TiC/SiC纳米级复合粉体。研究了电解时间、槽电压等参数对阴极电解产物的影响。实验结果表明,高钛渣中的钛氧化物在直接电解还原过程中生成了CaTiO_3,Ti_2O_3,TiO等中间产物,CaTiO_3的后续电解还原是该过程的控速环节。探讨了CaO在CaCl_2-NaCl熔盐中的含量对高钛渣电脱氧过程的影响。结果表明,当熔盐中CaO含量小于1%(摩尔分数,下同)时,添加少量的CaO,可促进CaTiO_3的还原;当CaO含量大于2%时,过多的CaO则不利于CaTiO_3的进一步电解还原,说明CaO的加入对CaTiO_3的电脱氧影响显著。分析了高钛渣中Ca,Mg,Al等氧化物的去向。实验结果表明,在高槽压下Ca,Mg,Al氧化物均能被电解还原成相应金属,经过HCl浸出后,上述金属杂质可以除去。研究表明,采用CaCl_2-NaCl熔盐中CaO加入量为1%、电解温度为900℃、槽电压3.2 V,电解时间为6 h的高钛渣被完全还原,经HCl浸出后所得产物TiC/SiC复合粉体为纳米级材料,粉体粒径分布均匀,平均值约为50 nm。  相似文献   

13.
对钙钛矿(CaTiO_3)硫酸化分解,使钛组分转化为假板钛矿(Fe_2TiO_5)的反应体系进行分析,结果表明,采用在CaTiO_3/Fe SO4体系中通入SO_2+O_2混合气体的方法可以将钛组分一步转化为假板钛矿。基于此,考察了反应温度、配料比、气相中SO_2浓度以及反应时间等因素对硫酸化转化的影响。研究表明,在反应温度1 473 K、SO_2浓度为25%(体积分数)、反应时间120 min、CaTiO_3/Fe SO_4摩尔比1∶2.1条件下,钙钛矿中92%的钛组分可以转化成为假板钛矿;钙钛矿硫酸化分解机理随温度而变化,在温度为973~1 373 K时,钙钛矿是按照CaTiO_3+SO_2+1/2O_2=Ca SO4+TiO_2进行分解,而在1 473 K时,钙钛矿是按照CaTiO_3+SO_2+1/2O_2+Fe_2O_3=Ca SO4+Fe_2TiO_5进行分解。  相似文献   

14.
采用"前驱体+碳热还原"的方法,利用XRD、SEM研究了不同碳源和氮源对合成(Ti,W)(C,N,B)固溶体粉末的物相组成和微观形貌的影响。结果表明:以木糖和氮气分别作为碳源和氮源,能在1 200℃下合成相成分单一的纳米晶(Ti,W)(C,N,B)固溶体粉末,且操作工艺简单、易控;选用炭黑和大分子量的酚醛树脂作为碳源,尿素作为氮源时,碳热还原反应和固溶反应难以充分进行,反应产物存在大量钛氧化物的中间相(如Ti_3O_5、Ti_2O_3等)和单质W等杂质相。  相似文献   

15.
钛渣的酸溶性决定于它的物相结构,具有理想黑钛石固溶体结构的钛渣是理想的酸溶性钛渣,由此导出了钛渣的酸溶性与其化学组成之间的定量关系。在1800千伏安电炉中熔炼攀枝花钛铁矿(含TiO_2 45.7%)制取的钛渣(含∑TiO_2 78.2%)具有良好的酸溶性。熔炼这种酸溶性钛渣与熔炼氯化法钛渣(含∑TiO_2 82%左右)比较,电耗显著降低,产能大幅度提高。综合国内外有关研究,分析了CaO和MgO在熔炼过程中的行为。CaO是熔炼钛渣的良好助熔剂,但MgO仅在熔炼还原度较小的钛渣时才具有助熔作用。酸溶性钛渣中Ti_2O_3:TiO_2<0.3,这种钛渣具有较低的熔点、粘度和导电率,从而降低了熔炼电耗,提高了炉产能。在熔炼还原度较大的钛渣(Ti_2O_3:TiO_2>0.3)时,MgO加剧钛渣的稠化,对熔炼过程产生不良影响。因此,含高MgO的攀枝花钛铁矿较适于用来制取酸溶性钛渣。  相似文献   

16.
以攀枝花含钛高炉渣为原料,采用氢氧化钠碱熔法分离炉渣中的有价组分,通过对碱熔过程中不同反应阶段所形成的碱熔渣及水浸渣的结构和谱学特征进行分析和表征,研究不同温度条件下原始矿物相及中间产物的化学反应过程,揭示含钛高炉渣碱熔过程中各有价组分赋存状态的变化。结果表明:在碱熔过程中,283℃时,含钛高炉渣中透辉石相结构被破坏,Si~(4+)离子形成Na_2SiO_3可溶性盐和中间产物CaMgSiO_4,随着反应的进行,CaMgSiO_4进一步与NaOH发生反应生成难溶物Na_2CaSiO_4;当碱熔温度升高到296℃时,镁铝尖晶石中Si~(4+)与NaOH反应生成可溶性盐Na_2SiO_3;当碱熔温度为320℃时,钙钛矿晶体结构开始被破坏,Ti~(4+)离子与NaOH作用生成难溶物Na_2TiO_3,经水浸后Na_2TiO_3晶形被破坏,变为无定型结构残留于水浸渣中。  相似文献   

17.
对钛铁矿在微波场中的碳热还原行为进行了研究,研究表明,钛铁矿在微波场中能快速被还原,还原生成Fe、Fe_3Ti_3O_(10)和少量的TiO_2相。微波还原过程中铁迁移汇聚到矿物表面富集成球状并与钛初步分离,这种聚集有利于后续工艺进一步分离钛铁。对还原后的钛铁矿分别进行了酸浸和磁选研究。酸浸结果显示,还原矿在室温下10%的H_2SO_4中浸出10min,铁的浸出率达到86.22%;磁选结果显示,磁选能得到铁含量为78.6%的富铁矿,得到的钛渣品位提高到60.92%。  相似文献   

18.
采用多功能熔体物性测定仪研究不同条件下TiO_2和TiC对中钛高炉渣流动性能的影响规律,分析高炉不同风口区域的含钛炉渣黏度变化规律。结果表明,在还原性气氛条件下,中钛高炉渣的黏度-温度曲线有明显的转折点,且黏度随TiO_2含量的增加而增加,炉渣熔化性温度随TiO_2含量的增加而升高。中性气氛下,中钛高炉渣的黏度和熔化性温度随TiO_2含量增加均降低。中钛高炉渣的黏度和熔化性温度随炉渣中TiC含量的增加急剧升高。高炉风口区域炉渣中含有的TiC和TiN含量较高,导致该区域炉渣的稳定性差。研究结果可为高炉生产制定合理的中钛高炉渣操作制度提供理论依据。  相似文献   

19.
Ye  GZ 阎惠君 《铁合金》1992,(4):44-50
研究了1300—1600℃温度间 Ti-Si-Ca-O 系的相关系。1300℃时 Ti-Si-O 亚系中 Ti_2O_3与 Ti_5Si_3和 SiO_2共存。硅化物Ti_5Si_4、TiSi、TiSi_2除了与金属硅之外,也和 SiO_2共存。1600℃时 Ti_5Si_3与 TiO+Ti_2O_3,Ti_2O_3+SiO_2,以及 SiO_2+Ti_5Si_4共存。具有40%(原子)Ti 的液态 Si-Ti 合金与 SiO_2共存。在 CaO-Ti_2O_3-SiO_2 亚系中有一种石榴石结构a=12.165±0.001的三元相 Ca_3Ti_2Si_3O_(12),还有二元化合物 Ca_2Ti_2O_5与 Ca_8Ti_6O_(17),发现后面这两种化合物是CaTiO_(1+x)和 Ca_4Ti_3O_(4+3x)固溶系组成部分,其中前者具有钙钛矿结构。发现在 CaO-Ti_2O_3—SiO_2系中能与所有三相组合物平衡的金属相是 Si 含量仅小量变化的化合物 Ti_5Si_3(熔点=2125℃).为了在1600℃时由硅热还原钛的氧化物得到液态金属和渣,必须用过量的 Si 来获得40%原子(52重量%)Ti(或低于此)的硅钛合金。  相似文献   

20.
高炉中析出Ti(C,N)的热力学探讨   总被引:2,自引:0,他引:2  
由热力学计算结果分析了高炉冶炼含TiO_2铁矿时钛的物理化学行为,指出:有固体碳存在的,渣—铁界面不可能有纯TiN生成,析出的固体应该是Ti(C,N),其中TiN含量随着渣—铁界面处氮分压值的增加而增加。当高炉渣含TiO_2为13—28%时,生铁含钛量主要受形成碳氮化钛的反应所控制,与渣中TiO_2含量无关,温度低,有利于限制Ti(C,N)的析出。“低硅钛”操作是合理的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号