首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
超磨细石灰石粉高强混凝土的研究   总被引:3,自引:1,他引:2       下载免费PDF全文
本文研究了用不同细度的磨细石灰石粉作掺合料配制高强混凝土时,石粉对混凝土性能的影响.试验表明,当石灰石粉足够细并且掺量适当时,可以产生微晶核效应,促进水泥的水化,同时在混凝土的水泥产物中形成大量的AFt,与C-S-H凝胶交织在一起,对提高混凝土强度和改善混凝土脆性起到显著作用.超磨细石灰石粉通过分散效应和微集料效应等,对混凝土具有增塑、保塑和减水的作用.  相似文献   

2.
黄晓燕 《硅酸盐通报》2022,41(1):109-117
本文采用蒸压养护方式制备管桩高强混凝土,以相同配合比的标准养护混凝土为对比组,分别研究磨细砂和石粉双掺时石粉取代率(花岗岩石粉/(花岗岩石粉+磨细砂),质量比)和石粉单掺时石粉掺量(花岗岩石粉/(花岗岩石粉+水泥),质量比)对管桩高强混凝土强度的影响,并通过XRD、ESEM等方法研究掺花岗岩石粉的管桩高强混凝土水化产物的种类及形貌特征。结果表明:蒸压养护下,混凝土强度随石粉取代率和石粉掺量的增加均先增大后减小, 石粉取代率为25%和石粉掺量为20%时混凝土强度分别达到最大值。由于花岗岩石粉中的SiO2在蒸压条件下会与水泥水化产物Ca(OH)2发生火山灰反应并生成托勃莫来石,使混凝土更为密实,因此相同配合比条件下蒸压养护3 d的混凝土强度高于标准养护28 d的混凝土强度。  相似文献   

3.
石灰石粉对混凝土性能影响研究   总被引:1,自引:0,他引:1  
朱柯 《硅酸盐通报》2015,34(2):492-495
石灰石粉广泛的应用到混凝土中,其对混凝土性能有着重要影响.本文通过加入15%和30%的石灰粉混凝土与未加石灰石粉混凝土进行对比试验,研究石灰石粉对混凝土性能的影响.试验结果表明:石灰粉能够明显改善混凝土的工作性能但也会明显降低抗压强度,通过扫描电镜分析可知在水化早期,石灰石粉能够加速Ca(OH)2的生成,同时能够稳定钙矾石的存在,不利于混凝土后期性能.  相似文献   

4.
石灰石粉锂渣超早强超高强混凝土研究   总被引:5,自引:1,他引:4  
研究了石灰石粉及其与锂渣复合掺加对混凝土强度的影响.研究表明,石灰石粉掺量在10%以下时有利于抗压强度的发展,在20%以下时有利于抗折强度的发展.10%的石灰石粉和10%的锂渣复合显示出优良的复合效应,当单位水泥用量为464kg/m3 时,7d抗压强度达到了105MPa.28d强度达到了124MPa,60d强度达到了132MPa.可代替矿渣、硅灰制备超早强高强超高强混凝土.  相似文献   

5.
矿渣粉对混凝土力学性能及工作性能的影响   总被引:3,自引:0,他引:3  
用高标号水泥和提高水泥用量配置高强混凝土,对混凝土性能(如工作性,水化热、收缩性等)存在不良影响.为此进行了工业废弃渣——长治钢铁集团高炉水淬渣,作为活性矿物掺合料代替混凝土中部分水泥的应用研究,重点试验了矿渣细度和掺量对混凝土性能的影响。结果表明:矿渣粉细度和掺量对混凝土的坍落度、28d和60d强度均有较大影响,且细度影响程度明显大于掺量的影响。当矿渣细度不变时,矿渣掺量由10%增加到70%,混凝土28d强度最大可提高12MPa,混凝土60d强度最大可提高16MPa,混凝土坍落度可提高2倍左右;而当矿渣掺量不变时,矿渣细度由361m^2/kg增加到657m^2/kg,混凝土强度最大可提高19MPa,混凝土坍落度最高只提高0.5倍左右。根据该结果,并考虑矿粉的粉磨成本等因素,生产上可控制矿粉掺量在40%以上.细度在450~552m^2/kg之间。  相似文献   

6.
以高寒高海拔地区西宁为例,通过将0,10%,20%石粉分别掺入C30普通混凝土,就石粉掺量对新拌普通混凝土和易性以及强度的影响进行了研究。结果表明,在制约混凝土综合性能提升的多因素二维函数区间内,随着单一变量石粉含量的增加,混凝土的某些技术性能得到改善,经济效果凸显。  相似文献   

7.
高矗  申向东  王萧萧  张通 《硅酸盐通报》2014,33(7):1583-1588
以天然浮石作为粗骨料,通过内掺0%、10%、20%、30%和40%质量分数的石灰石粉替代相同质量的水泥配制浮石混凝土,研究不同掺量石灰石粉对浮石混凝土抗压强度和劈裂抗拉强度的影响,并借助扫描电镜观察分析混凝土微观结构.结果表明:石灰石粉掺量为10%时,浮石混凝土各龄期力学性能显著提高;石灰石粉可加速水泥早期水化,提高水泥石基体和浮石-水泥石界面过渡区密实度;石灰石粉具有后期水化活性.  相似文献   

8.
研究了高温对碱激发超高性能混凝土(AUHPC)力学性能的影响,并利用MIP、XRD及FTIR分析了其浆体的孔结构及物相组成.结果 表明:采用90℃蒸汽养护可显著提高AUHPC的早期强度,其28 d抗压、抗折强度可分别达197.0 MPa和38.7 MPa;高温处理后,其强度随温度升高而先升后降,且其使用温度不宜超过600℃.200℃时,AUHPC的浆体孔径得以细化,结构最致密,强度显著提高;高于400℃后,其浆体少害孔数量增加,结构变疏松;800℃时,浆体中发生固相反应,生成大量钙黄长石,强度大幅降低.  相似文献   

9.
通过不同掺量的速凝剂和石灰石粉对水泥浆体凝结时间、流动度、粘度、胶砂强度和水化进程的影响研究,探讨速凝剂与石灰石粉共同作用下对水泥浆体性能的影响。结果表明:石灰石粉能够提高水泥净浆的流动度和粘度,并且其流动度和粘度损失随着石灰石粉掺量的增加而增大。速凝剂掺量为5%时,石灰石粉掺量为5%,水泥的凝结时间进一步缩短,水泥胶砂3 d、7 d和28 d的抗压强度略有提高,当石灰石粉超过5%时,水泥的凝结时间随着石灰石粉掺量的增加反而延长,水泥的胶砂抗折、抗压强度随着石灰石粉掺量的增加而降低。水泥水化初始期和加速期的水化放热速率随着速凝剂掺量的增加而增加,掺加速凝剂后,水化加速期提前10 h,同时石灰石粉也能够提高水泥水化初始期和加速期的水化放热速率。掺加速凝剂后,水泥水化放热量反而降低了一半,但是加入石灰石粉后,水泥水化放热量增加。  相似文献   

10.
通过使用当地现有的常规材料,配制出了28d抗压强度超过150MPa,并且抗折强度超过20MPa的超高强水泥基材料,并且采取三点弯曲试验,测试了不同强度等级的超高强水泥基材料的力学参数,研究结果表明:随着水胶比的降低,超高强混凝土的强度增大,其超高强混凝土的折压比以及拉压比比高强混凝土的低,比普通混凝土的更低,这说明超高强混凝土的脆性进一步增大。  相似文献   

11.
现代水泥、混凝土中大量使用化学外加剂,特别是有机化合物和高分子聚合物化学外加剂,例如:水泥助磨剂、混凝土超塑化剂、引气剂、增稠剂等,大量有机物的加入改变了水泥水化过程、水化动力学、微观结构的发展,传统的水泥混凝土化学不再能很好地解释其微观结构与宏观性能的关系。为此,提出一个新兴的水泥混凝土化学的补充分支—有机水泥化学,在未来的水泥混凝土研究中该给予更多的重视。以有机化学外加剂—助磨剂为例,说明其对水泥水化动力学、水化产物形态以及水泥浆体的超塑化剂需求量、流变特性、强度发展等宏观性能的影响。水泥中加入微量的助磨剂,不仅改变了水泥颗粒分布,还改变了水化动力学,促进起始离子的溶解和铝酸钙(C3A)和铁铝酸钙(C4AF)的早期水化,明显地提高早期强度和28 d强度。助磨剂吸附在水泥表面改变了水泥的表面性质,其中助磨剂和Ca2+、Fe2+螯合起关键作用。  相似文献   

12.
本文研究了废旧橡胶粉的粒径(20目、80目、120目)、掺量(2%、4%、6%、8%、10%)对水泥砂浆抗压强度、抗折强度的影响,通过对3d、7d、14 d、21 d、28 d抗压强度、抗折强度的对比,结果显示:当橡胶粒径相同时,橡胶粉掺量与水泥砂浆的抗压强度、抗折强度成反比;在橡胶粉掺量相同的条件下,橡胶粉粒径越小,则抗压强度及抗折强度下降越大.  相似文献   

13.
以三种不同粒度的硫铝酸盐水泥(CSA水泥)为矿物外加剂,研究了CSA水泥粒度、掺量对硅酸盐水泥(PC)物理性能、水化过程及水化产物性能的影响.研究表明:CSA水泥的掺量与粒度同时影响PC的凝结时间及标准稠度用水量;当CSA水泥掺量较低(1%)时,PC抗压强度有所提高;CSA水泥缩短PC水化诱导期,促进早期水化,降低C3S的水化速率,加快AFt向AFm转化;CSA水泥增加了早期水泥硬化浆体的孔隙率、累计孔体积及最可几孔径,但对后期硬化浆体的影响不大;而AFt与CH的形貌如短针状AFt及大尺寸六方板状CH不利于晶体的连生与结合,对强度的影响较大.  相似文献   

14.
桂雨  廖宜顺  蒋卓 《硅酸盐通报》2016,35(11):3720-3723
研究了不同硼砂掺量对硫铝酸盐水泥(SAC)浆体凝结时间、抗压强度的影响规律,并通过XRD和TG分析等方法对3d龄期时的水化产物进行分析.结果表明,硼砂对硫铝酸盐水泥具有很明显的缓凝效果,并且在一定的掺量范围内,早期抗压强度随着硼砂掺量的增大而有明显提高,且后期强度不会有倒缩现象.硫铝酸盐水泥的主要水化产物是钙矾石,当硼砂掺量从0增大到0.30%时,钙矾石的生成量先增多后减少,使得水泥浆体的强度先增大后减小.  相似文献   

15.
本文研究水泥增效剂对硅酸盐水泥凝结时间、胶砂强度以及水化程度的影响,并利用XRD和SEM测试手段对水泥增效剂改性水泥的水化产物及硬化浆体的形貌进行了分析.实验结果表明:水泥增效剂的掺入,缩短了水泥浆体的凝结时间,提高了水泥胶砂的抗压强度及抗折强度,促进了硅酸盐水泥早期水化.XRD与SEM分析表明:水泥增效剂的掺入不仅提高了水泥的水化程度,增加了钙矾石的生成量,而且改善了水泥浆体的微观结构.  相似文献   

16.
掺加纳米颗粒会影响到材料的力学性能,本文采用水热法在碱性环境下合成了片状纳米勃姆石,并将其加入到水泥中,研究了片状纳米勃姆石对水泥浆体力学性能的影响规律,并结合水化热、X射线衍射分析、热分析、氮吸附分析、扫描电子显微镜分析等测试手段对片状纳米勃姆石在水泥中的作用机理进行研究。结果表明:片状纳米勃姆石的加入可以明显提高水泥浆体的早期力学性能,与空白组相比,当勃姆石掺量为0.5%(质量分数)时,水泥浆体的抗压强度最大可以提高42.8%;勃姆石的加入不仅可以提高水泥水化反应速率,促进水泥的早期水化,还可以减少有害毛细孔含量,优化孔结构,提高水泥浆体的致密程度,从而促进水泥早期强度的发展。该研究结果为改善水泥的力学性能提供了新的方法。  相似文献   

17.
研究了磨细锶渣掺量与水泥胶砂强度的关系,对比分析了基准水泥胶砂与常温磨细锶渣水泥胶砂、800℃煅烧磨细锶渣水泥胶砂抗冻性差异,探讨了三种养护条件下常温磨细锶渣与800℃煅烧磨细锶渣对胶砂强度及干缩性能的影响.结果表明,随磨细锶渣掺量的增加,胶砂强度逐渐降低;磨细锶渣对胶砂的抗冻性不利,但经800℃煅烧处理后磨细锶渣抗冻性得到提高,且满足抗冻性要求;水中养护与空气中标准养护有利于磨细锶渣水泥胶砂强度形成,磨细锶渣对胶砂的后期强度形成有利,且提高了水泥胶砂的干缩性能.  相似文献   

18.
不同磷酸盐对磷酸镁水泥水化硬化性能的影响   总被引:2,自引:0,他引:2  
以四种酸式磷酸盐P(NH4H2PO4、(NH4)2HPO4、KH2PO4、K2HPO4),与电解镁砂(MgO)配制磷酸镁水泥,测试了其凝结时间及3h、1d、3d硬化体的抗压、抗折强度;并利用六偏磷酸钠作为缓凝剂,研究了其对所配制磷酸镁水泥水化历程的影响.试验结果表明,在相同摩尔浓度下,磷酸二氢盐较一氢盐更能促进MPC的水化历程,使MPC凝结时间缩短、早期强度增长较快.SEM、XRD证明,在不影响水化产物种类的情况下,六偏磷酸钠可改变磷酸镁水泥的水化历程,能有效控制其水化反应速率,同时不影响其强度的发展.  相似文献   

19.
利用废弃混凝土制备全组分混凝土细粉,研究细粉对水泥标准稠度需水量、凝结时间、胶砂强度和化学结合水的影响,并采用XRD、TG-DSC等测试技术,研究其对水泥水化产物的影响.研究结果表明:细粉不影响水泥的标准稠度需水量,但缩短了水泥的凝结时间;低掺量下细粉对胶砂强度影响不大,但掺量超过10%时,胶砂强度随着掺量的增大不断降低;细粉的掺入虽然促进了浆体中水泥的水化,但却降低了浆体的总水化程度;细粉中的石灰石可以与水泥水化产物发生反应,生成单碳水化铝酸钙.  相似文献   

20.
阎培渝  岳蕾  代丹  罗宇维 《硅酸盐通报》2016,35(7):2019-2023
本文研究了无固化剂的环氧树脂水泥石,在70℃条件下的水化硬化过程,水化产物和宏观力学性能.结果表明,没有固化剂,在碱性环境和高温条件下,环氧树脂难以完全固化.环氧树脂延缓了水泥的水化过程,不会改变水泥的水化产物.未固化的环氧树脂以膜的形式存在于水泥石中,填充内部孔隙.掺加环氧树脂可提高水泥石的轴心抗压强度,降低其弹性模量,从而改善其使用性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号