首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
为研究干法造粒室中挡板结构对粉体混合效果的影响,通过构造欧拉两相流模型模拟粉体与空气的相互作用,采用k-epsilon RNG离散模型模拟湍流情况,采用滑移网格法和多重参考坐标系法分别求解动区域和静区域流场,分析了在造粒室内分别加装三种结构的挡板后对颗粒体积分数和速度场的影响.结果表明:当挡板横截面分别为长方形、三角形和半圆形时,颗粒体积分数径向云图显示体积分数小于0.31的面积占比分别约为26%、18%、2%;体积分数大于0.37的面积占比分别约为1%、15%、27%;颗粒速度大于0.54 m/s的面积占比分别约为45%、20%、40%;颗粒轴向速度大于0.4 m/s的面积占比分别约为80%、40%、35%.该结果显示长方形挡板造粒室更有利于促进粉体混合,提高粉体流动性.  相似文献   

2.
为探究粘结剂中聚乙烯醇、聚乙二醇、羧甲基纤维素钠的配比对干法制备ZrO2陶瓷轴承造粒粉性能的影响,配制6份不同配比的粘结剂溶液,采用旋转流场式干法造粒机制备ZrO2陶瓷轴承造粒粉。搭建颗粒级配检测平台对造粒粉粒径分布进行分析,借助Carr流动性指数法分析造粒粉流动性。结果表明:聚乙烯醇对造粒粉颗粒级配及流动性影响最大,聚乙二醇次之,羧甲基纤维素钠最小。当粘结剂溶液中聚乙烯醇:聚乙二醇:羧甲基纤维素钠配比为3:6:1时,干法制备ZrO2陶瓷轴承造粒粉的有效颗粒占比为81.6%,流动性指数为81,造粒粉级配均匀、颗粒流动性好。  相似文献   

3.
为探究陶瓷干法造粒气-固两相流混合过程挡板对粉体混合效果影响,构建欧拉气-固两相流模型分析空气与粉体相互作用,简化造粒区域并建立粉体混合过程三维物理模型,采用滑移网格法、多重参考系法模拟造粒室旋转运动,修正RNG离散模型分析湍流状态。根据径向及轴向粉体体积分数分布、速度场探究不同挡板对粉体混合影响,并改进挡板位置和结构以提高粉体混合程度。结果表明:当造粒室内分别含矩形壁挡板、矩形底挡板、半圆形壁挡板时,粉体轴向体积分数高于0. 27的区域分别占总面积29%、40%、37%;粉体径向体积分数高于0. 29的区域分别占总面积24%、15%、33%;粉体轴向平均速度分别为0. 4 m/s、0. 5 m/s、0. 6 m/s;对不同粒径的粉体进行密度测定实验,当造粒室内含矩形壁挡板时,粉体密度基本为1. 9 g/cm3,一致性较好。该结果显示矩形壁挡板造粒室内的粉体堆积程度最低,粉体混合性能最优,该模型及结果能够有助于提高对陶瓷干法造粒室气固两相流流场的理解,并对造粒室挡板设计优化提供一定理论指导。  相似文献   

4.
陶瓷干法造粒过程温度场对造粒效果的研究   总被引:1,自引:0,他引:1  
针对陶瓷干法造粒机造粒过程温度场对造粒效果的影响,结合实验与数值模拟对比分析造粒过程温度场对造粒效果的影响.基于CFD方法建立模拟造粒过程温度场的数学模型,模拟造粒过程中温度场随时间变化情况,并实验测得造粒室温度值、造粒成品率随时间变化情况.仿真结果与实验数据对比表明:当造粒时间为7 min时,仿真结果显示造粒室内的温度值都低于80℃,实验测得颗粒成品率占整体颗粒质量的56%;当造粒时间为9 min时,仿真结果显示造粒室内温度值高于80 ℃的区域占造粒体积3%,实验测得颗粒成品率占整体颗粒质量的72%;当造粒时间为11 min时,仿真结果显示造粒室内温度值高于80℃的区域占造粒体积21%,实验测得颗粒成品率占整体颗粒质量的61%.仿真结果与实验数据对比分析说明:当造粒室内温度值高于80℃时,将在一定程度上降低造粒的成品率.  相似文献   

5.
针对陶瓷墙地砖干法制粉造粒立柱对颗粒均匀度的影响.基于不同的造粒立柱几何参数,采用干法制粉制备颗粒,分析造粒立柱对颗粒均匀度的影响;同时基于CFD方法构建陶瓷墙地砖干法制粉混料过程欧拉-欧拉双流体模型,数值模拟验证实验的正确性.实验检测表明:当造粒立柱几何参数依次为6 mm、7 mm、8 mm、9 mm、10 mm时,对应制备颗粒最大均匀度为4.81、4.97、5.23、5.17、4.99,颗粒平均均匀度为4.71、4.85、4.98、4.87、4.83.数值模拟表明:当造粒立柱几何参数依次为6 mm、7 mm、8 mm时,粉体的分散性逐渐变好,团聚现象逐渐消失;当造粒立柱几何参数依次为9 mm、10 mm时,粉体的分散性逐渐变差,团聚现象逐渐明显.综合分析说明:造粒立柱几何参数为8 mm时,颗粒均匀度最大,粉体分散性最好,团聚现象不明显,且实验检测与数值模拟基本相吻合.  相似文献   

6.
为探究圆柱形和双层正八边形陶瓷干法造粒搅拌槽对粉体混合效果的影响.采用欧拉-欧拉方法构建气-固两相流混合过程计算模型,简化搅拌槽模拟区域并通过有限体积法建立空气-粉体混合过程物理模型,利用CFD方法对两种搅拌槽内流场进行数值计算,分析粉体体积分布与速度场,对比搅拌槽结构对粉体混合效果的影响,同时通过实验分析颗粒级配与流动性.结果表明:当搅拌槽为圆柱形时,槽壁区域形成回转抛物面,底部两侧槽底出现搅拌死角,粉体堆积度为12%;当搅拌槽为双层正八边形时,槽壁与两侧槽底湍流强度高,无回转抛物面与搅拌死角,粉体堆积度为4%.实验测得两种结构搅拌槽内有效颗粒百分比分别为71%、84%,流动性指数分别为60.66、75.5,侧面验证了数值模拟的正确性.双层正八边形搅拌槽相对圆柱形搅拌槽可有效提高粉体混合效果.  相似文献   

7.
8.
介绍了一种新型悬浮态干法造粒工艺的工艺参数研究,通过改变悬浮态干法造粒工艺的增湿腔内壁材料、雾化水中粘结剂含量、给料速率和增湿腔截面风速四种参数,以所制备陶瓷砖坯体粉料的收料率、含水率和成粒率为指标,研究不同参数对陶瓷砖坯体粉料生产的影响,用优选出的参数组合,与湿法造粒工艺及优化前的颗粒质量做了对比.结果表明:增湿腔内壁材料对所制备颗粒的收料率和成粒率影响很大,使用聚四氟乙烯作为增湿腔内壁材料制备效果明显好于有机玻璃,粘结剂含量在1%左右时粉料与雾化液滴接触结合的情况为最佳;随着给料速率的增加,收料率随之增大,但是实验结果的含水率及成粒率都呈现先增大后减小的趋势,并在3.1 kg/min时出现最大值;随着增湿腔截面风速的提高,颗粒成粒率和含水率降低,而收料率增加.以优化后参数方案制备的坯体粉料颗粒质量上也得到了进一步优化,颗粒流动性更好,与湿法工艺接近.  相似文献   

9.
介绍了一种新型悬浮态干法造粒工艺的工艺参数研究,通过改变悬浮态干法造粒工艺的增湿腔内壁材料、雾化水中粘结剂含量、给料速率和增湿腔截面风速四种参数,以所制备陶瓷砖坯体粉料的收料率、含水率和成粒率为指标,研究不同参数对陶瓷砖坯体粉料生产的影响,用优选出的参数组合,与湿法造粒工艺及优化前的颗粒质量做了对比.结果表明:增湿腔内壁材料对所制备颗粒的收料率和成粒率影响很大,使用聚四氟乙烯作为增湿腔内壁材料制备效果明显好于有机玻璃,粘结剂含量在1%左右时粉料与雾化液滴接触结合的情况为最佳;随着给料速率的增加,收料率随之增大,但是实验结果的含水率及成粒率都呈现先增大后减小的趋势,并在3.1 kg/min时出现最大值;随着增湿腔截面风速的提高,颗粒成粒率和含水率降低,而收料率增加.以优化后参数方案制备的坯体粉料颗粒质量上也得到了进一步优化,颗粒流动性更好,与湿法工艺接近.  相似文献   

10.
针对光固化氧化铝陶瓷3D打印过程中的浆料粘度及制件性能,通过旋转粘度计测量得到不同分散剂及氧化铝粉体级配条件下的陶瓷浆料的粘度,优化了分散剂的选择及氧化铝粉体级配;通过对光固化3D打印、脱脂和烧结氧化铝陶瓷样件的弯曲强度和收缩率、致密度测试,得到了粉体级配前后不同固相含量氧化铝的抗弯曲性能、收缩率及致密度。研究结果表明,光固化氧化铝陶瓷3D打印浆料制备过程,选择PMA25作为其分散剂,选择10μm(60wt%)+5μm(10wt%)+2μm(30wt%)的粉体级配的氧化铝粉体,可以有效降低浆料粘度。同时,通过选择不同粒径的氧化铝陶瓷粉体,可以减小粉体之间的间隙,增加了粉体之间的有效粘接面积,使得氧化铝粉体之间的粘接更加牢固,陶瓷制件的抗弯曲性能更好、致密度更高。  相似文献   

11.
王斌  郑伍魁  李辉  丁松雄 《硅酸盐通报》2015,34(5):1312-1319
坯体粉料的制备是陶瓷墙地砖生产中的重要一环,影响着产品的最终质量.我国的陶瓷制粉技术从20世纪80年代起,通过借鉴国外先进技术和自主研发等方式发展形成了各种不同的制粉工艺.本文通过介绍我国近三十年陶瓷墙地砖制粉技术的发展历程,分析了近年来关于陶瓷砖制粉工艺的专利、造粒机结构及其工作原理,比较了用不同造粒工艺制备粉料的性能,并针对目前陶瓷砖制粉工艺存在的问题,提出了未来的发展方向.  相似文献   

12.
铣削参数对牙科玻璃陶瓷表面粗糙度影响分析   总被引:3,自引:0,他引:3  
肖行志  郑侃  廖文和  刘红杰 《硅酸盐通报》2013,32(11):2187-2193
通过正交实验设计方法,开展了牙科玻璃陶瓷材料的高速铣削加工研究,对各种工况下加工表面的粗糙度进行了测量.运用极差分析方法,确定了各切削参数对玻璃陶瓷表面粗糙度的影响程度,并分析了单个因素对表面粗糙度的影响规律,得出轴向切削深度是影响表面粗糙度的主要因素.同时,采用多元回归分析,建立了玻璃陶瓷表面粗糙度指数预测模型.通过对比预测值和实验值,得到该模型的平均绝对误差仅为0.037μm,验证了其构建的合理性和有效性,为玻璃陶瓷在口腔修复领域的应用提供了参考依据.  相似文献   

13.
喷动流化床造粒实验研究   总被引:1,自引:0,他引:1  
喷动流化床用于粉体造粒,是一种新型的造粒方法。与其它几种造粒方法相比.具有设备投资省、能耗低、设备结构简单等优点。作者经过实验发现,气流雾化器安装于底部或侧部,或是二者结合。可实现对多种粉体的造粒和包衣。气流雾化喷嘴是喷动流化造粒装置的主要部件。为此对气流雾化喷嘴作了一些实验研究。  相似文献   

14.
The process of reactive granulation is considered. Sodium carbonate primary particles react with dodecyl‐benzenesulfonic acid droplets to form granules where the active component is an anionic surfactant formed by the reaction. The effect of primary particle size on the maximum binder/solids ratio was systematically investigated and found to be directly proportional to the specific surface area of the primary particles regardless of how this surface area was achieved—whether by monodisperse powders or bimodal powder mixtures. The effect of binder viscosity on the maximum binder capacity has shown a nontrivial behavior: while the maximum binder content increased with increasing binder viscosity for fine primary particles, the opposite trend was observed in the case of coarse primary particles. This behavior was explained by detailed studies of primary particle wetting and binder penetration into particle beds, as well as by microtomography analysis of the internal granule structure. © 2014 American Institute of Chemical Engineers AIChE J, 61: 395–406, 2015  相似文献   

15.
Ribbon milling is a critical step in dry granulation using roll compaction as it determines the properties of granules, and subsequently the properties of final products. During ribbon milling, fragmentation of ribbons or flakes (i.e., compressed agglomerates from dry powders) are induced by either impact or abrasion. Understanding these fragmentation mechanisms is critical in optimizing ribbon milling processes. In the current study, the discrete element method (DEM) was used to model fragmentation at the microscopic level, providing a detailed insight into the underlying breakage mechanism. In DEM modeling, virtual ribbons were created by introducing an appropriate interfacial energy using the cohesive particle model based on the JKR theory. A set of three‐dimensional parallelepiped ribbons with solid fraction and surface energies ranging from and were created and then fractured during impacts with a plane at various impact velocities, to model impact dominated milling. The fragmentation rate, and the number and size of fragments (i.e., granules) resulting from the breakage of a ribbon during the impact were determined. The DEM simulations showed that the granules size distribution had a bimodal pattern and there was a strong correlation between the size of fines generated from fragmentation during impact and the size of the feed powder (i.e., the size of the primary particles in this study), which was consistent with the observation from physical experiments. Two quantities were calculated from the DEM simulations: the number of fragments p and the fraction of fines z for each breakage event which were then used as input parameters for population balance models (PBM) to develop a DEM–PBM modeling framework. Comparision with published experimental data shows that the developed DEM‐PBM model is a promising tool for analysing ribbon milling, but all breakage mechanisms involved need to to considered in order to achieve an accurate prediction. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3692–3705, 2017  相似文献   

16.
In dry granulation, fine cohesive powders are compacted into large multi‐particle entities, i.e., briquettes, flakes, or ribbons. The powder compaction is generally followed by milling, a size reduction process, which is crucial to obtain the desired granule size or properties. Abrasion and impact are two primary mechanisms of comminution in ribbon milling, but they are not completely understood. The aim of this article was hence to investigate numerically the fragmentation process induced by abrasion during ribbon milling. The discrete element method (DEM) was employed to simulate abrasion tests, for which three‐dimensional parallelepiped ribbons were generated using auto‐adhesive elastic spheres. The fragmentation rate, and the fragments size and number were determined for various surface energies and abrasive velocities. The DEM results showed that the mass‐equivalent fragment size distributions were bi‐modal, similar to the experimental observations and the numerical results for impact‐dominated ribbon milling reported in the literature. In addition, two quantities were determined from the DEM analysis, i.e., the number of large fragments and the fraction of fines, which was then integrated into the population balance models (PBM) so that a DEM–PBM multiscale modeling framework was developed to predict the granule size distribution during ribbon milling. The DEM–PBM results were compared with the experimental results reported in the literature, and a broad agreement was obtained, implying the proposed DEM–PBM can be used to analyse the ribbon milling behavior. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1191–1204, 2018  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号