共查询到18条相似文献,搜索用时 67 毫秒
1.
根据汉江流域皇庄站1981-2008年逐月径流量与1980-2007年逐月74项环流指数、北太平洋海温场、500hPa高度场的相关关系,利用逐步回归挑选预报因子,构建基于遗传算法的支持向量回归机模型(GA-SVR),并对2009-2013年逐月径流量进行预报;结果表明,径流预报精度较高,汛期平均相对误差在30%以内,非汛期、年总量平均相对误差在20%以内,均优于随机森林和多元线性回归模型。将GA-SVR模型的预报结果作为概率预报的基础,采用贝叶斯理论中的水文不确定性处理器(HUP)对预报的可靠度进行分析;结果表明,HUP不仅可以提供精度更高的定值预报,还能以置信区间的方式量化预报的可靠度,提供更为丰富的预报信息。 相似文献
2.
3.
采用基于支持向量机的预测模型对水库中长期入库径流进行预报,建立径流预报的SVM模型。预报因子的优劣决定着预测精度的高低。为了提高预报精度,尝试采用模糊优选法对预报因子进行优选。将所建模型应用于新疆雅马渡站的径流预测中,并与没有进行预报因子优选的SVM模型进行比较。结果表明,进行预报因子优化后的SVM模型明显提高了径流的预报精度,具有更好的应用价值。 相似文献
4.
支持向量机在径流中长期预报的应用中,普遍采用网格搜索法率定其参数,存在耗时较长、参数选取不当而导致预报精度低等问题,针对该问题提出了一种基于遗传算法的支持向量机模型,该模型结合遗传算法收敛速度快的特点对支持向量机参数进行优化选择,实现参数的全局自动化选取。应用乌江流域某电站的径流预报结果显示,相对于基于网格搜索参数寻优的支持向量机模型及神经网络模型,基于遗传算法参数寻优的支持向量机模型预报精度更高,泛化能力更强。更多还原 相似文献
5.
支持向量机在中长期径流预报中的应用 总被引:31,自引:6,他引:31
本文探索了支持向量机在中长期径流预报中的应用。在支持向量机建模过程中引入了径向基核函数,简化了非线性问题的求解过程,并应用SCE-UA算法辨识支持向量机的参数。在SCE-UA搜索过程中进行了指数变换,以快速准确的找到最优参数。与人工神经网络模型预报结果比较显示,该模型能提高径流中长期预报的精度。 相似文献
6.
基于随机森林和RBF人工神经网络构建了新丰江水库枯季入库径流中长期预报模型,首先采用随机森林模型从74个水文气象特征量和前期降雨、径流中筛选预报因子,之后利用筛选的预报因子作为RBF神经网络的输入层,利用RBF神经网络对新丰江水库枯季入库径流每月的流量进行预报。结果表明,基于随机森林和RBF人工神经网络模型的枯季径流中长期预报模型精度较高,其中训练期平均合格率为91.24%,平均相对误差为7.80%,检验期平均合格率为67.31%,平均相对误差为26.73%,模型有较高的可靠性,预报结果可作为东江流域枯季径流预报重要参考依据。 相似文献
7.
8.
采用最小二乘支持向量机的方法,利用李桥水库1977-2004年的径流资料,对其2005-2011年的径流量进行预测。分析结果表明2005-2011年的预测径流量距平百分率在±10%之间,符合预测精度要求。 相似文献
9.
随着枯水期水资源短缺问题日益突出,人们对枯水径流的研究也越来越重视.运用支持向量机模型对湘江湘潭站年最小7 d平均流量进行预测.为了检测预报效果,将其预报结果与投影寻踪模型、人工神经网络模型的预报结果进行比较,表明支持向量机模型的误差合格率最高,预报精度也最高. 相似文献
10.
11.
12.
支持向量机中核函数的选择对大坝监控模型预测精度具有较大影响。基于支持向量机结构风险最小化以及小波框架理论,提出用小波核函数代替高斯径向基核函数(RBF),并采用粒子群算法对支持向量机的参数进行寻优,得到一种新的大坝变形预测模型。针对某实际工程,基于监测数据,将该模型与采用RBF核函数的支持向量机模型以及统计回归模型做对比,结果显示采用小波核函数的支持向量机模型模拟精度更高,泛化能力更强。 相似文献
13.
基于PCA和支持向量机的径流预测应用研究 总被引:1,自引:0,他引:1
影响径流量的因素很多,并且这些因素与径流量之间存在着复杂的非线性关系。将主成分分析和支持向量机相结合,首先进行特征提取,降低数据维数,获取数据的主要信息;然后利用支持向量机建立径流预测模型,取得了非常好的效果。并与支持向量机回归模型进行了比较,结果表明该方法具有更好的预测精度,值得推广。 相似文献
14.
准确可靠的水库中长期预报结果对于指导受水区水资源优化配置等具有重要意义。本文首先选取SARIMA 模型、SVM 模型、XGBoost 模型与RF 模型分别构建公平水库月入库径流预报方案,以气象因子的物理机制为基础,在成因分析与随机森林重要性排序的基础上筛选关键预报因子并输入至4 个单一模型中。然后在对比分析各模型优劣的基础上,以线性与非线性组合2 种方式构建组合预报方案。结果表明:RF 模型在4 个单一模型中的模拟结果表现最优,SARIMA 模型的模拟精度随着入库径流量的增加而增加;组合预报模型较任一单一模型的模拟结果均更好,基于神经网络的非线性组合方式能够有效提高验证期的模拟精度,增加模型的泛化能力。 相似文献
15.
基于支持向量机的水流挟沙力预测研究 总被引:8,自引:2,他引:6
本文阐述了支持向量机(SVM)的基本原理及特性,提出了基于SVM的水流挟沙力研究方法,并对30组高、中、低含沙量的水槽试验资料进行训练,训练值与实测值符合较好,再用训练好的SVM模型对4组试验数据进行了预测,预测结果与实测值相差较小。理论分析和实例结果验证了基于SVM的水流挟沙力研究方法比BP神经网络法具有更高的预测精度和可靠性。 相似文献
16.
依据我国湖库富营养化评价标准和支持向量机(SVM)原理及方法,构建基于交叉验证(CV)的CV-SVM湖库营养状态识别模型,采用随机内插的方法在各分级标准阈值间生成训练样本和测试样本,在达到预期识别精度后将模型运用于全国24个湖库营养状态的识别,并与投影寻踪法、评价指标法和神经网络评价法的识别结果进行比较。结果表明:基于线性核函数的CV-SVM模型对于随机生成的训练样本和测试样本的正确识别率分别达到97.8%和97.3%(5次平均),对全国24个湖库营养状态的识别结果与采用投影寻踪法、评价指标法和神经网络评价法的识别结果基本相同,模型具有泛化能力强、识别精度高、收敛速度快、不易陷入局部极值等特点。 相似文献
17.
根据故县水库入库控制站卢氏站及以上地区的水文资料,采用超渗产流与蓄满产流相结合的产流模式、纳希瞬时单位线单元汇流模型以及马斯京根多河段连续流量演算的河道汇流模型,研究探讨故县水库入库流量及水量的预报方法,并利用该模型在2011年9月洛河上游秋汛洪水期间进行了作业预报,取得了满意的结果,可作为故县水库调度的决策依据之一。 相似文献