首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
《塑料》2019,(5)
以膨胀箱上盖为研究对象,运用Moldflow软件进行注塑模拟,存在充填不完全、翘曲变形和体积收缩率偏大等缺陷。以模具温度、熔体温度、保压压力、注塑压力为影响因素,确定了4因素3水平的正交试验方案,基于Moldflow模拟,分析了工艺参数对翘曲变形和体积收缩率的影响。结果表明,在研究范围内,工艺参数组合对翘曲变形和体积收缩率的影响能力分别为"保压压力熔体温度模具温度注塑压力"和"熔体温度模具温度保压压力注塑压力",最优的工艺参数分别为"模具温度为40℃,熔体温度为200℃,保压压力为60 MPa,注塑压力为120MPa"和"模具温度为40℃,熔体温度为200℃,保压压力为50 MPa,注塑压力为80 MPa"。  相似文献   

2.
以某汽车保险杠为研究对象,应用Moldflow有限元分析,以注塑成型质量中的翘曲量和体积收缩率为质量指标,采用CAE模拟技术结合正交试验,分析熔体温度、模具温度、注射时间、保压时间和保压压力对制品质量的影响规律。用极差分析法分别得到翘曲变形和体积收缩变形的最优工艺参数组合。最后利用多目标综合平衡法,选出兼顾最小的翘曲变形和体积收缩率的工艺参数组合,并对该工艺组合方案进行模拟验证。  相似文献   

3.
根据阀座的结构特点,构建了制品的CAE分析模型。利用Moldflow软件对其进行注塑成型数值模拟,以阀座体积收缩率和翘曲变形量为质量评价指标,从影响塑件质量的多个因素中选择模具温度、熔体温度、填充时间、冷却时间、保压时间、保压压力6个因素设计了DOE正交试验,确定出对指标影响较大的4个因素。设计田口正交实验分析这4个因素对指标的影响,优化出注塑工艺参数:熔体温度为270℃,模具温度为70℃,冷却时间为20 s,保压压力为注射压力的90%。对优化结果进行CAE分析验证,效果良好,实现了制品质量指标的多目标优化。利用UG软件设计并制造出阀座注塑模具,生产出合格产品,验证了模拟结果的正确性。  相似文献   

4.
基于Moldflow的注射器翘曲分析   总被引:7,自引:0,他引:7  
周大路  何柏林  李树桢  黄薇 《塑料》2007,36(2):95-98
利用Moldflow软件对注射器塑料件的翘曲原因进行分析,并采用正交试验设计方法(单参数变动实验)对保压压力、熔体温度、模具温度、冷却时间等进行分析。经分析后得出影响制品翘曲变形的最主要因素是保压压力,其次则是熔体温度、模具温度、冷却时间。模拟得到本例最优成型参数分别为,模具温度35℃、熔体温度240℃、保压压力100MPa、保压时间17s、冷却时间20s。  相似文献   

5.
为保证注塑制品的质量与精度要求,以检测仪外壳的翘曲变形量和体积收缩率为优化目标,采用有限元分析软件Moldflow对其进行模拟分析。选取熔体温度、模具温度、注射压力、保压压力、保压时间、冷却时间6个工艺参数及结构参数(浇口直径)作为输入量,翘曲变形量和体积收缩率作为输出量,建立深度神经网络(DNN),并且,对网络进行改进。将混合水平正交试验得到的数据作为样本,对神经网络进行训练和测试,得到输入量和输出量之间的非线性映射关系。结合非支配排序遗传算法(NSGA-Ⅱ)对浇口直径及工艺参数进行优化,优化后,塑件的翘曲变形量为0.368 4 mm,体积收缩率为6.236%,与优化前相比,分别降低了67%、39%。  相似文献   

6.
采用正交试验方法,利用Moldflow分析软件对汽车车门内饰板进行注塑成型模拟,分析了熔体温度、模具温度、注射时间、保压压力和保压时间等对注塑件翘曲变形的影响,找出了可以降低车门内饰板翘曲变形量的最佳工艺参数,并通过实际生产验证了所选工艺参数的正确性。当模具温度为35℃、保压时间为18 s、保压压力为60MPa、熔体温度为220℃、注射时间为7 s时,车门内饰板的翘曲变形量最小,Moldflow软件模拟出的最小值为8.33 mm;而采用优选工艺参数进行实际注塑得到的车门内饰板翘曲变形量为8.85 mm,与模拟结果基本吻合。  相似文献   

7.
以高铁内风挡为研究对象,利用Moldflow软件对产品的注射成型过程进行有限元模拟。将内风挡的体积收缩率和缩痕指数作为研究目标,采用正交试验法进行数据处理,得到注射工艺参数对内风挡体积收缩率和缩痕指数的影响程度,按照由大到小的顺序排列为模具温度>熔体温度>注射时间>保压时间>保压压力,并且,由响应回归方程得到最佳注射工艺参数。优化结果表明,在模具温度185℃、熔体温度65℃、注射时间115.5 s、保压时间8.49 s、保压压力70 MPa时,体积收缩率和缩痕指数达到最小,分别为7.878%和9.015%,与优化前相比,分别降低了12.5%、10.8%,优化后的工艺参数能够显著降低制品的体积收缩率和缩痕指数,提高内风挡的成型质量。  相似文献   

8.
《塑料》2018,(6)
选取聚碳酸酯(PC)和丙烯腈-丁二烯-苯乙烯(ABS)共聚物作为填充材料,运用Moldflow软件对某温控器外壳注塑成型过程进行模流分析,得到PC和ABS的填充、翘曲变形分析结果,表明PC更适于生产温控器外壳。通过设计正交实验,探究了各工艺参数对翘曲量的影响。结合极差分析得出,影响塑件质量的顺序为:保压时间、熔体温度、保压压力、模具表面温度,并得到最优工艺参数,即模具表面温度为95℃,熔体温度为285℃,保压时间为11 s,保压压力为130 MPa。优化后,塑件的体积收缩率和最大翘曲量为2.311%,0.927 mm,分别降低了54.75%和40.69%,结果表明,优化后的工艺参数减小了翘曲量。  相似文献   

9.
利用Moldflow对Taguchi法和L16(45)正交表所设计出的聚丙烯(PP)薄壁制品注塑方案进行仿真,研究发现:注射时间、保压时间、保压压力是影响PP薄壁制品翘曲变形的主要因素,并且得到最优注塑参数为:注塑机料筒温度180℃,模具温度75℃,注射时间3.0 s,保压时间3.5 s,保压压力65 MPa。另外,通过CAE模流分析软件中PP薄壁制品注塑加工的翘曲变形进行仿真发现,正交试验所获得的优化工艺的总翘曲变形量为1.417 mm,翘曲变形百分比约为3.30%。其中由于冷却引起的翘曲变形量约为0.159 mm,而由收缩和取向引起的翘曲变形分别约为1.853 mm和0.904 mm。  相似文献   

10.
根据快速冷热成型特点,以某款MP4外壳为例,采用Moldflow2012软件分析了引起翘曲变形的原因;利用田口实验的正交表和Moldflow2012软件,以减小产品的翘曲变形量和体积收缩率为研究目标,通过极差分析了5个研究变量对翘曲变形量和体积收缩率的影响,并且通过研究田口实验方法中的望小特性,得出了综合评价塑件质量研究目标的最佳工艺参数组合:熔体温度为235℃、模具温度为75℃、保压压力为85 MPa、注射压力为75 MPa、注射时间为6 s,并验证了其合理性。  相似文献   

11.
针对无线采集器收缩不均的缺陷,通过Moldflow对制品进行初始分析。以冷却时间、熔体温度、注射速率、保压时间和保压压力为试验变量,无线采集器的体积收缩率为质量评价指标,设计正交试验。结果表明:通过极差分析得到最优工艺参数为冷却时间20 s、熔体温度320℃、注射速率80 cm3/s、保压时间12 s以及保压压力45 MPa。与优化前相比,制品翘曲变形明显降低,降低幅度达到35.47%。  相似文献   

12.
根据快速冷热成型特点,以某款MP4外壳为例,采用Moldflow2012软件分析了引起翘曲变形的原因;利用田口实验的正交表和Moldflow2012软件,以减小产品的翘曲变形量和体积收缩率为研究目标,通过极差分析了5个研究变量对翘曲变形量和体积收缩率的影响,并且通过研究田口实验方法中的望小特性,得出了综合评价塑件质量研究目标的最佳工艺参数组合:熔体温度为235℃、模具温度为75℃、保压压力为85 MPa、注射压力为75 MPa、注射时间为6 s,并验证了其合理性。  相似文献   

13.
《塑料科技》2017,(7):81-86
以某一电工仪表外壳为研究对象,模具温度、熔体温度、充填时间和保压压力4个注塑工艺参数为优化目标,制品残余应力和体积收缩率为试验目标函数,采用响应面法(RSM)进行试验设计。所得最优工艺参数优化组合为:模具温度80℃、熔体温度285℃、充填时间1.8 s、保压压力89.18 MPa。经Moldflow模拟,得到最大残余应力与最大体积收缩率分别为54.83 MPa和3.395 4%,这表明响应面模型对工艺参数具有很好的优化效果。以此工艺参数组合为基础,进一步对保压曲线进行优化,得到了近乎最小的残余应力和体积收缩率,从而保证了产品质量,提高了生产效率。  相似文献   

14.
唐伦  周洁  肖卫兵 《塑料科技》2020,48(9):107-111
使用Pro/E软件建立了塑料锥齿轮的三维模型,基于Moldflow软件优化了锥齿轮的浇口位置,并对主动锥齿轮和从动锥齿轮的注射工艺进行了研究。仿真结果表明,收缩不均对总翘曲变形产生的影响最大。选取体积收缩率、缩痕和最大翘曲变形量3个指标进行综合评价,选取体积收缩率和缩痕的权重系数为0.2,最大翘曲变形量的权重系数为0.6。通过正交优化试验得到从动锥齿轮的最优注射参数为熔体温度240℃、注射+保压+冷却时间36 s和保压压力80%,主动锥齿轮的最优注射参数为熔体温度240℃、注射+保压+冷却时间36 s和保压压力64%。  相似文献   

15.
针对某异型出风罩注塑成型工艺,以聚碳酸酯/丙烯腈-丁二烯-苯乙烯共聚物(PC/ABS)工程塑料合金为填料,运用Moldflow软件对其注塑过程进行模流分析,通过田口实验设计研究了熔体温度、保压时间、保压压力、注射时间和模具温度对塑件收缩率和翘曲变形量的影响,得到它们对塑件收缩率的影响次序为:保压时间>熔体温度>保压压力>注射时间>模具温度,对翘曲变形量的影响次序为:保压压力>注射时间>熔体温度>保压时间>模具温度。基于灰色关联分析,获得了最优组合工艺参数,即:熔体温度280℃、模具温度为65℃、注塑时间2.1 s、保压时间11 s、保压压力21 MPa。优化后的仿真结果表明,塑件的体积收缩率为6.523%、翘曲变形量为0.80 mm,比灰色关联次序中位组合的样本数据分别降低6.9%和15.8%,并获得最大注射压力为20.34 MPa、最大锁模力为3.25×10^5 N,为后期模具的设计和注塑参数设定提供了有力的参考,缩短了模具开发周期。  相似文献   

16.
通过Moldflow分析某中央接线盒的翘曲变形优化方案。基于初始工艺参数得到最大翘曲变形量为1.627 mm,不满足设计要求。设计正交试验并分析最大翘曲变形量的极差及方差。结果表明:保压压力和模具温度对最大翘曲变形量的影响极显著,注射时间和熔体温度对最大翘曲变形量的影响显著,而v/p切换体积对最大翘曲变形量的影响不显著。优化工艺参数:熔体温度为215℃,模具温度为45℃,保压压力为32 MPa,注射时间为1.1 s及v/p切换体积为99.5%。利用Moldflow计算得到最大翘曲变形量为0.992 7 mm,相比初始工艺降低39.0%,满足设计指标要求。优化工艺的填充过程稳定、注射压力较小、外观状态合格。试模样品的外观良好,尺寸满足要求,优化工艺得到验证。  相似文献   

17.
采用Moldflow软件对医用SEBS制品的成型过程进行仿真实验,以体积收缩率为评价指标,研究了工艺参数的改变对制品收缩率的影响。并通过圆柱形试样注塑成型实验,验证模拟了实验中工艺参数对收缩变形规律的影响。结果表明,熔体温度和保压压力的变化对塑件体积收缩率的影响较为显著;通过圆柱形试样的模拟及实验验证,得出了医用瓶塞注塑成型模拟实验的结果具有一定的参考价值,并确定了医用瓶塞的最佳工艺方案组合:熔体温度180℃,注射压力25 Mpa,保压压力20 Mpa,模具温度20℃,保压时间16 s。最小收缩率为1.76%,小于其他工艺条件下的收缩率,说明注塑工艺对SEBS制品的收缩变形具有较大影响。  相似文献   

18.
利用CAE及Moldflow软件对烟雾报警器外壳模型进行浇注系统以及冷却系统的建立,基于正交试验与CAE模拟技术对烟雾报警器外壳模型进行翘曲优化分析,产品的翘曲变形主要由于收缩不均引起,初始翘曲变形量为0.572 0 mm。各工艺参数对翘曲变形量的影响程度最大的为溶体温度,其次为保压压力、保压时间、冷却时间,最小为模具温度。在熔体温度220℃、模具温度60℃、保压压力140 MPa、保压时间10.0 s、冷却时间30 s的工艺参数设置下,产品翘曲变形量为0.183 0 mm,翘曲变形量最小,与初始翘曲变形量相比降低68.01%,产品精度显著提高。  相似文献   

19.
孙骏  秦宗慧 《中国塑料》2012,26(11):79-82
以汽车反光罩作为研究对象,选取模具温度、熔体温度、保压压力、保压时间作为试验变量,以体积收缩率和翘曲变形作为优化目标,采用Box Behnken试验设计方法,建立试验变量与优化目标之间的二阶响应面模型,通过Design Expert软件进行方差分析得到最优序列,并且由此预测最优结果。利用Moldflow软件对最优序列进行模拟分析,验证模型预测的准确性。结果表明,应用二阶响应面模型进行优化设计是提高产品质量的一种有效途径。  相似文献   

20.
研究对象为塑料旋钮,以翘曲变形量和体积收缩率为优化目标并设计正交实验,选取模具温度、熔体温度、注射时间、保压压力和保压时间为影响因素。运用Moldflow软件进行仿真,得到翘曲优化的最佳组合。针对正交实验优化对体积收缩不敏感的情况,采用BP神经网络训练后进行二次寻优。对比Moldflow仿真结果满足工程精度,得到同时满足最佳翘曲和最小体积收缩率的最佳优化组合参数。结合正交实验和BP神经网络预测的方法减少了运算时间提高了分析效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号