首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以两嵌段共聚物聚氧化乙烷-b-聚丙烯酸叔丁酯(PEO-b-Pt BA)及其水解产物聚氧化乙烷-b-聚丙烯酸(PEO-b-PAA)为模板制备了亚微米至纳米级棒状聚联苯胺(PBz)颗粒。利用红外光谱、核磁共振、透射电镜及循环伏安和交流阻抗等测试了PBz的结构、形貌和电化学性能。结果表明,嵌段共聚物为模板合成的PBz呈现棒状分布,颗粒直径均小于200 nm且部分在100 nm以内。PBz颗粒形貌均匀,尺寸均一,使用有机溶剂溶解嵌段共聚物模板未对PBz颗粒形貌产生影响。不同模板合成的PBz均具有一定的电化学活性,以PEO-b-PAA为模板得到的各样品电化学性能优于PEO-b-Pt BA为模板的情况。在电流密度为1 A/g时,材料比电容最高达到了263 F/g。  相似文献   

2.
采用脉冲电沉积一步合成得到石墨烯/聚苯胺(PANI)复合材料,通过SEM和XRD对材料的形貌和结构进行了表征,复合材料中聚苯胺为翠绿亚胺态,呈纤维状形貌。将所得石墨烯/PANI复合材料用作超级电容器电极进行电化学性能测试,比纯聚苯胺表现出更优异的超电容性能。电流密度为0.5A·g~(-1)时,石墨烯/PANI的比容量可达703F·g~(-1),且具有良好的倍率性能。  相似文献   

3.
采用原位聚合法制备不同摩尔比的PANI/MoS_2纳米复合材料。通过X射线衍射、红外光谱、透射电镜等手段,对所制备的材料进行了结构和微观形貌的表征,结果表明:所制备的聚苯胺呈现棒状纳米纤维包覆在卷曲的纳米鳞片MoS_2片层上形成了PANI/MoS_2纳米复合材料。通过循环伏安法、恒流充放电等测试手段对材料的电化学性能进行了研究,结果表明:在不同电流密度下PANI∶MoS_2=1∶0.1的二元复合物比电容明显高于纯聚苯胺,在1 A/g时PANI∶MoS_2=1∶0.1的二元复合物的比电容值可达942.5 F/g,相比于同电流密度下的PANI的400.5 F/g的高出一倍。表明适量的MoS_2的掺入有助于提高PANI电极材料的电化学电容特性。  相似文献   

4.
通过微乳法制备高导电性二氧化锰/聚苯胺(α-MnO_2/PANI)复合物。首先制备α-MnO_2,然后以α-MnO_2和苯胺为原材料制备α-MnO_2/PANI复合物。通过X-射线衍射光谱(XRD)和傅立叶变换红外光谱(FT-IR)对产物结构和形貌进行了表征。通过循环伏安法(CV)、计时电位法(GCD)和电化学交流阻抗(EIS)对其电化学性能进行了表征。结果表明α-MnO_2/PANI复合物表现出比纯α-MnO_2、PANI更高的电化学性能,在电流密度为0.5 A·g~(-1)时α-MnO_2/PANI复合物比电容高达790.0 F·g~(-1),而α-MnO_2、PANI比电容分别为103.5 F·g~(-1)和339.1 F·g~(-1),表明此材料复合后电化学性能得到了显著的提升。  相似文献   

5.
申振  戴亚堂  张欢  王伟  马欢  欧青海 《精细化工》2012,(12):1181-1185,1211
纳米线型导电聚合物是一种具有良好应用前景的超级电容器电极材料,该文用简易的原位化学氧化法制备了微孔炭/聚苯胺纳米线(MC/PANI)复合材料,并以此复合材料为活性物质制备工作电极,在1 mol/L H2SO4中,通过循环伏安、交流阻抗和恒流充放电技术考察了其电化学电容性能,结果表明,在0.2 A/g的电流密度下,MC/PANI电极首次充放电比电容可达到329 F/g,高于PANI电极的259 F/g,且MC/PANI电极电荷传递电阻(Rct)小于MC和PANI,可见纳米线型PANI可加强电极材料的电化学性能。  相似文献   

6.
阚侃  付东  王珏  任滨侨  张伟君  张晓臣 《精细化工》2019,36(10):2060-2067
以交联状氮掺杂碳纳米纤维(CNF)为碳骨架,采用插层辅助原位氧化聚合法使聚苯胺(PANI)均匀地在CNF表面包覆生长,制备了交联状聚苯胺包覆碳纤维(PANI/CNF)复合纳米线。采用TEM、SEM、TG、FTIR、Raman、XRD、XPS和BET对PANI/CNF复合纳米线的形貌和结构进行了表征。通过CV、EIS和GCD测试了PANI/CNF复合纳米线的电容特性。结果表明:PANI/CNF复合纳米线相互连通,表面呈荆棘状,具有多级空间结构。CNF质量分数为40%的PANI/CNF40复合纳米线电极在电流密度为1.0 A/g时,比电容达到820.31 F/g。电流密度增加到20.0 A/g时,比电容保留率为74.8%。在10.0 A/g时,经过2000次充放电循环后电极的比电容保持率达到89.7%。  相似文献   

7.
以海藻酸钠(SA)为软模板,采用原位氧化聚合法制备了聚苯胺/海藻酸钠(PANI/SA)电极材料,研究了SA的浓度对其结构、形貌及电化学性能的影响。利用傅里叶变换红外光谱(FTIR)和扫描电镜(SEM)对所制PANI/SA的结构和形貌进行了表征。在1 mol/L H2SO4溶液中,通过循环伏安法(CV)、恒电流充放电(CD)和交流阻抗法(EIS)测试了电极材料的电化学性能。结果表明:PANI/SA的比电容随聚合体系中SA质量分数的增大先升高后降低,w(SA)=0.01%时,PANI/SA为由纳米纤维相互交织缠绕的网状结构,其比电容最高(459.7F/g),较纯PANI提高了20.8%。  相似文献   

8.
:纳米线型导电聚合物是一种具有良好应用前景的电容器电极材料,本论文中,用简易的原位化学氧化法制备了微孔碳/聚苯胺纳米线(MC/PANI)复合材料,并以此复合材料为活性物质制备工作电极,在1 mol/L H2SO4中,通过循环伏安、交流阻抗和恒流充放电技术研究了其电化学电容性能,研究结果表明:在0.2 A/g的电流密度下,MC/PANI电极首次充放电比电容可达到329 F/g, 高于PANI电极的259 F/g,且MC/PANI电极电荷传递电阻(Rct)小于MC和PANI,可见纳米线型PANI可加强电极材料的电化学性能。  相似文献   

9.
利用制备的RAFT试剂合成了两亲性嵌段聚合物PS-b-PAA,以其为高分子配体,并以邻菲罗啉(Phen)为第二配体与铕(Ⅲ)离子配位诱导自组装,在N,N-二甲基甲酰胺溶液(DMF)中得到了聚合物纳米胶束,该纳米胶束能够形成核壳结构,通过透射电镜、荧光光谱对该稀土配合物纳米胶束的形态结构及荧光性能进行了表征。该形貌尺寸可控的纳米胶束具有优良的荧光性能,在太阳能电池等发光材料中有着广泛的应用。  相似文献   

10.
导电聚苯胺(PANI)与活性炭(AC)构筑复合电极材料是当前制备高性能超级电容器电极材料的热点研究方向。其关键点之一是制备出炭与PANI两种材料均匀分散、且具有相当牢固强度连接界面的复合材料。为此,以AC为基材,对其进行功能化处理后,将苯胺在其表面原位聚合,获得具有界面共价键连接的PANI/AC复合材料(PANI–c–AC)复合材料。通过扫描电子显微镜、元素分析、傅里叶变换红外光谱、X射线衍射仪及电化学工作站等测试并研究其结构与电容性能。结果表明,具有界面共价键连接的PANI–c–AC复合材料比电容值(393.3 F/g)最高,既优于单一AC(111.8 F/g)与PANI(296.2 F/g),也优于无共价键连接的PANI–AC复合材料(360.5 F/g)。  相似文献   

11.
利用高导电性的氮化钛纳米线作为聚苯胺的生长基质,有效减少电极材料的电荷传输电阻,提升聚苯胺的超级电容储能性能。以碳纤维作为柔性基底,采用晶种辅助水热结合电化学聚合法制备了柔性聚苯胺/氮化钛纳米线电极材料(PANI/Ti N),电极材料呈现高度有序的同轴核壳纳米线结构,且纳米线之间彼此分离,有利于电解液离子的传输,提升储能性能。电流密度为1 A/g时,比电容为403 F/g;电流密度从0.5 A/g增加到10.0 A/g时,比电容保持率为初始容量的53.4%,电流密度为5 A/g时,循环充放电1 000次后PANI/Ti N的电容保持率为79.1%,与PANI相比均有较大提升,表明PANI/Ti N具有较好的电化学储能性质。以PANI/Ti N电极材料为电极构建柔性全固态对称型超级电容器(PANI/Ti N//PANI/Ti N)考察其应用性。PANI/Ti N//PANI/Ti N柔性超级电容器在电流密度为1 A/g时,比电容可达100.2 F/g,且在不同角度弯曲后比电容无明显衰减。当功率密度为500 W/kg时,能量密度可达50.1 W·h/kg,且1个单元的该超级电容器可驱动红色...  相似文献   

12.
通过环氧化(苯乙烯-丁二烯-苯乙烯)三嵌段共聚物(SBS)与端羧基甲氧基聚乙二醇的开环反应,合成了带聚氧乙烯支链的两亲性SBS接枝物,通过红外光谱及核磁共振氢谱进行了表征,并确定了该两亲性聚合物具有良好的乳化性质及相转移催化性质.  相似文献   

13.
《山东化工》2021,50(16)
聚苯胺(PANI)作为一种导电高分子材料具有较高的比电容、良好的环境相容性以及易制得等优点在能源储存、传感器以及电磁屏蔽等领域有着广泛的应用前景。但是由于聚苯胺自身结构的原因传统化学法所制备的聚苯胺极易发生团聚从而造成聚苯胺分散性差的形貌,而这对聚苯胺用作超级电容器电极材料造成了不利的影响。因此对聚苯胺形貌的有效控制已经成为当前研究的重点。有鉴于此,本工作对ZIF-9进行热处理以及酸刻蚀,成功制备出了碳材料。并以其为PANI聚合反应基底以期望对PANI复合材料的形貌进行一定的控制。该方法制备的聚苯胺复合材料显示出一定的电化学性能。在当反应物浓度为0.05 M时达到最大放电比电容约为195 F·g~(-1)。  相似文献   

14.
采用冷冻干燥后管式炉碳化制备壳聚糖电极材料,经KOH活化法活化后通过氧化还原聚合法制备聚苯胺(PANI)/壳聚糖电极材料,运用循环伏安、交流阻抗、充放电等测试聚苯胺/壳聚糖电极的电化学性能。结果表明,聚苯胺/壳聚糖电极材料表现出良好的电容性能和稳定的电化学性能,比电容129.6 F/g,循环充放电500次,比电容保持率90.8%。  相似文献   

15.
采用冷冻干燥后管式炉碳化制备壳聚糖电极材料,经KOH活化法活化后通过氧化还原聚合法制备聚苯胺(PANI)/壳聚糖电极材料,运用循环伏安、交流阻抗、充放电等测试聚苯胺/壳聚糖电极的电化学性能。结果表明,聚苯胺/壳聚糖电极材料表现出良好的电容性能和稳定的电化学性能,比电容129.6 F/g,循环充放电500次,比电容保持率90.8%。  相似文献   

16.
钱东 《精细化工》2011,28(5):442-446,504
在酸性条件下采用液相共沉淀法合成球状和海胆状的α-MnO2,并以α-MnO2为氧化剂,H2SO4溶液为介质,引发苯胺聚合制备得到不同质量比的聚苯胺(PANI)/α-MnO2复合物。采用XRD、FTIR、SEM等法对材料的形貌和物相进行表征,同时采用循环伏安、计时电位法考察了PANI/α-MnO2复合物在1 mol/L Na2SO4水系电解液中的电化学性能。结果表明,起始原料m(苯胺)∶m(α-MnO2)=1∶3制备的PANI/α-MnO2复合物,在制备电极过程中其质量未到α-MnO2质量一半的条件下,PANI/α-MnO2复合物的比电容达到64.58 F/g,是所合成的α-MnO2比电容(43.49 F/g)的1.48倍,且经过600次循环,其比电容保持率在85%以上,而α-MnO2只有57%的比电容保持率。  相似文献   

17.
在酸性条件下采用液相共沉淀法合成球状和海胆状的α-MnO2,并以α-MnO2为氧化剂,H2SO4溶液为介质,引发苯胺聚合制备得到不同质量比的聚苯胺(PANI)/α-MnO2复合物。采用XRD、FTIR、SEM等法对材料的形貌和物相进行表征,同时采用循环伏安、计时电位法考察了PANI/α-MnO2复合物在1 mol/L Na2SO4水系电解液中的电化学性能。结果表明,起始原料m(苯胺)∶m(α-MnO2)=1∶3制备的PANI/α-MnO2复合物,在制备电极过程中其质量未到α-MnO2质量一半的条件下,PANI/α-MnO2复合物的比电容达到64.58 F/g,是所合成的α-MnO2比电容(43.49 F/g)的1.48倍,且经过600次循环,其比电容保持率在85%以上,而α-MnO2只有57%的比电容保持率。  相似文献   

18.
利用化学氧化法原位聚合制备了聚苯胺(PANI)/氧化石墨烯(GO)接枝复合材料。透射电子显微镜表明,PANI纳米颗粒均匀地分布在GO的表面;通过UV-vis光谱证实了GO和PANI之间存在着强烈的相互作用;充放电测试表明,PANI/GO纳米复合材料具有良好的电荷储存特性,最高比电容可达575 F/g。由于与GO之间的化学结合作用,PANI的充放电循环稳定性得到明显提高。  相似文献   

19.
采用电化学方法制备出聚苯胺/石墨烯复合材料,并通过扫描电子显微镜(SEM)、傅里叶红外光谱仪(FT-IR)、紫外-可见分光光度计(UV-Vis)对氧化石墨烯、聚苯胺和聚苯胺/石墨烯复合材料的结构进行表征。结果表明,聚苯胺纳米颗粒均匀分布在石墨烯片层间。聚苯胺/石墨烯复合材料的比电容最大为238 F/g。循环1 000次以后,聚苯胺的电容衰减24. 5%,而复合材料的电容衰减15%。与聚苯胺相比,聚苯胺/石墨烯复合材料的电容量高、循环稳定性好,电导率从5 S/cm提高到10 S/cm。  相似文献   

20.
采用阴离子开环聚合方法合成了两亲性嵌段共聚物PLA-PEG-PLA。用1H-NMR和GPC对聚合物的结构进行了表征,通过透射电子显微镜(TEM)观察了聚合物在离子液体中自组装的形貌,发现PLA-PEG-PLA在离子液体1-丁基-3-甲基咪唑六氟磷酸盐([BMIM][PF6])中形成了胶束。当疏水链长固定时,胶束的自组装形状主要依赖于亲水链的长度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号