首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
黎思杏  郑韩  卢家欣  王可  马军现  王悦辉 《塑料工业》2022,(12):147-152+157
以糠胺和双马来酰亚胺Diels-Alder(DA)反应单体,通过两步合成法合成具有DA键的热可逆聚氨酯(PU),然后通过溶液共混和流延成膜工艺将石墨烯(G)引入到DAPU体系中制备DAPU-G自修复复合膜,研究了复合膜的微观结构、热学、力学、介电性能以及红外热修复性能等。实验结果表明,复合膜中石墨烯质量分数在0.4%~1.5%范围内,低含量的石墨烯可实现在DAPU中均匀分布,高石墨烯含量易形成团聚体;石墨烯改善了复合膜的热学稳定性,且随着石墨烯含量增加,复合膜的拉伸强度先增加后逐渐下降,而介电常数逐渐增加,电导率随着频率的增加逐渐增加,但与石墨烯的含量的关系不大,所有的复合膜几乎没有导电性。石墨烯含量在0.4%~1.5%范围内的复合膜经红外光热处理5 min,表面划痕未实现完全热自修复,红外光热处理10 min且石墨烯含量在0.7%~1.5%范围内的复合膜实现了完全热自修复,说明石墨烯改善了复合膜的红外光热修复性能。  相似文献   

2.
采用溶液共混浇铸成膜法,制备了热塑性聚氨酯/石墨烯复合材料,并对其结构和性能进行了研究。结果表明,高温还原得到的石墨烯可大幅度提高热塑性聚氨酯复合材料的储能模量。电学性能测试表明,热塑性聚氨酯/石墨烯复合材料的电性能在质量分数为1%~3%的填料量范围内出现了突变,体积电阻率降低了6个数量级。  相似文献   

3.
研究了热塑性聚氨酯(TPU)粉末对石膏基三维打印的成型过程和3D打印成品性能的影响规律,研究结果表明随着TPU粉末含量的增加,打印成品的机械强度和耐水性能变好;但TPU粉末含量过高时,打印成品的尺寸偏差较大,易破损且打印时出现错层。综合考虑打印成品的表面特征、尺寸精度、耐水性、机械强度以及打印过程的流畅性,TPU粉末和石膏粉末较佳的质量配比为(40∶50)~(50∶40)。当TPU粉末质量分数为50%时,打印成品的尺寸偏差最小,此时其抗压强度和拉伸强度比纯石膏3D打印成品分别提高了38.5%和117.4%。打印成品内部热塑性聚氨酯粉末经热熔融/常温冷却固化后处理形成的带状塑性结构是改善打印成品抗压和拉伸强度以及增加其致密性和耐水性的主要原因。  相似文献   

4.
采用热还原的方法由氧化石墨烯(GO)制备得到还原石墨烯(RGO),并将两种石墨烯与热塑性聚氨酯(TPU)复合制得纳米复合材料薄膜。进而考察了两种纳米复合材料薄膜的导电、导热及力学性能。结果表明:在TPU中加入GO能够得到高导热、低导电的纳米复合材料,而加入RGO则得到高导热、高导电的纳米复合材料;同时,GO和RGO的加入,均能显著提高TPU的拉伸强度和模量。  相似文献   

5.
用3-氨丙基三甲氧基硅氧烷(APTMS)插层改性氧化石墨烯(GO),得到氨基化石墨烯(APTMS-GO)。通过FTIR、XRD、Raman、TG、TEM、XPS表征了APTMS-GO的结构和形态。将APTMS-GO与带有异氰酸根的聚氨酯预聚物以原位聚合的方式聚合,制得了含APTMS-GO质量分数(以聚氨酯合成原料的总质量计,下同)为0、0.06%、0.11%、0.16%、0.22%、0.33%和0.55%的APTMS-GO/WPU纳米复合材料,并测试了其拉伸性能、热性能和疏水性的变化;利用FESEM和TEM观察了截面中纳米填充物的分散情况及乳液的粒径。结果表明:通过原位聚合得到的复合材料拉伸强度明显改善,由纯水性聚氨酯的10.13 MPa增加到28.96 MPa;当APTMS-GO质量分数为0.22%时,复合材料的初始分解温度(T_(d5))增大到279℃,与纯水性聚氨酯相比提高了34℃;随着APTMS-GO质量分数的逐步增大,复合膜的接触角由71.3°提高到91.28°,复合材料的疏水作用得到了改善。  相似文献   

6.
采用1-丁基-3甲基咪唑四氟硼酸盐离子液体对石墨烯表面进行功能化修饰,用溶液共混法将离子液体改性石墨烯(IG)填入热塑性聚氨酯弹性体(TPU)制备IG/TPU复合材料,并考察了IG用量对IG/TPU复合材料形状记忆性能的影响.结果表明,纯TPU没有表现出光响应形状记忆性能,在激光照射下几乎没有回复.而IG的加入能显著提...  相似文献   

7.
以二苯基甲烷-4,4′-二异氰酸酯(MDI)和扩链剂1,4-丁二醇(BDO)为聚氨酯弹性体硬段(控制硬段质量分数32%),以实验室自制聚己二酸乙二醇酯二醇(PEA)和聚己二酸乙二醇丙二醇酯二醇(PEPA)为软段,经预聚体法合成不同结构的热塑性聚氨酯弹性体(TPU)。研究了弹性体软段部分对其硬度、力学性能和结晶性能的影响。结果表明,控制热塑性聚氨酯弹性体硬段部分不变,改变软段,材料硬度变化不大;软段聚酯二元醇随其相对分子质量的增加,TPU力学性能和结晶性能均增强;研究不同PG含量的软段PEPA-TPU发现,当PG质量分数为10%时,TPU力学性能与结晶性能最好。  相似文献   

8.
制备不同比例的海藻酸钙/水性聚氨酯复合膜,研究了海藻酸钙用量对水性聚氨酯膜阻燃性能的影响。结果表明,海藻酸钙可以改善水性聚氨酯膜的阻燃性能,随着海藻酸钙含量增加,膜的拉伸强度增加,断裂伸长率下降。当海藻酸钙质量分数为20%时,复合膜的氧指数为26.5%,拉伸强度由纯聚氨酯膜的1.0 MPa增加到15.8 MPa,断裂伸长率为456%。  相似文献   

9.
采用熔融共混技术制备了硫酸钙晶须(CSW)填充改性的热塑性聚氨酯弹性体(TPU)复合材料(CSW/TPU),讨论了CSW对复合材料的力学性能、加工性能和热性能的影响。结果表明,CSW含量对CSW/TPU复合材料的力学性能有明显影响,CSW质量分数为5.0%时,CSW/TPU复合材料的综合力学性能较好。转矩流变仪分析表明,CSW的加入使得复合材料的加工性能变好。热重分析发现,CSW的加入并未对TPU的分解温度产生明显影响。  相似文献   

10.
通过短切碳纤维(CF)与热塑性聚氨酯弹性体(TPU)共混改性制得一系列不同CF质量分数(含量)、不同方法处理CF的碳纤维/TPU复合材料。重点研究了不同CF质量分数和不同表面处理方法对碳纤维/TPU复合材料的微观形态、物理机械性能、热性能和动态力学性能的影响。研究结果表明:随着CF质量分数的提高,复合材料的杨氏模量和压缩模量逐渐提高,当CF质量分数为25%时,拉伸强度出现最大值。热性能和动态性能也均以CF质量分数为25%时最佳。各种表面处理中以胺基硅烷KH5501处理CF对CF/TPU复合材料的机械性能和热稳定性改善效果明显;而TCA-K44和浓硝酸氧化刻蚀CF/TPU复合材料则表现出较好的韧性和弹性。SEM分析结果表明,TPU与CF间具有很好的粘接。  相似文献   

11.
采用熔融共混制备丙烯腈-丁二烯-苯乙烯共聚物/热塑性聚氨酯(ABS/TPU)3D打印耗材,通过熔融沉积成型(FDM)制备标准测试样条,并对ABS/TPU体系的成型性能、力学性能、微观结构、流变性能进行研究。结果表明,TPU改性ABS的成型性能均优于未改性ABS,当TPU质量分数大于20 %时,成型过程不发生翘曲收缩现象;同时有较好的力学性能,缺口冲击强度为18.81 kJ/m2比纯ABS提高了95.94 %,拉伸强度为32.92 MPa,下降了8.5 %;TPU质量分数大于20 %时,材料发生韧性断裂,并随TPU的增加,断面粗糙程度增加,有空洞现象;ABS/TPU具有较好的相容性,且随TPU含量增加,ABS/TPU分子链扩散能力增加。  相似文献   

12.
以N,N-二甲基甲酰胺(DMF)为溶剂、超支化聚酰胺修饰的氧化石墨烯(HPNGO)和热塑性聚氨酯(TPU)为原料,采用静电纺丝法制备了HPNGO/TPU复合纳米纤维。通过扫描电子显微镜、傅里叶变换红外光谱仪和动态力学分析仪研究了不同添加量的HPNGO对HPNGO/TPU复合纳米纤维的形貌、结构及性能的影响。结果表明:HPNGO/TPU复合纳米纤维直径与HPNGO的添加量成反比关系,纤维拉伸强度和初始模量与HPNGO的添加量成正比关系;当添加HPNGO质量分数(相对TPU)为3%时,HPNGO/TPU复合纳米纤维直径最小,平均直径为0.17μm,拉伸强度和初始模量最大,分别为3.884,0.193 MPa,断裂伸长率最小为170.2%;HPNGO的加入对TPU的分子结构无影响,二者之间为物理复合。  相似文献   

13.
采用环氧氯丙烷(EPI)对氧化石墨烯(GO)进行共价键改性制备环氧改性氧化石墨烯(EPGO),再将EPGO共混水性聚氨酯(WPU)制得含有不同EPGO质量分数(以水性聚氨酯有效含量计)EPGO/WPU复合膜,通过FT-IR、XRD、TEM表征了EPGO的结构和形态并测试了成膜拉伸性能、耐磨性能。实验结果表明:EPGO的添加可以明显提高水性聚氨酯膜的拉伸强度,当添加0.8wt%的EPGO时,复合膜的拉伸强度达到12.9MPa,较空白膜提高了67.5%,杨氏模量提高了39.2%,且复合膜的耐磨性显著提高,表明EPGO的添加对水性聚氨酯膜有一定的增强作用。  相似文献   

14.
采用石墨烯、热塑性聚氨酯(TPU)复合改性聚氨酯注浆材料,并添加少量的粉煤灰、炉底渣及碱性激发剂制备一种低密度、高强度、快硬性的TPU/石墨烯改性聚氨酯注浆材料。借助聚氨酯弹性体材料密度测试仪、万能材料试验机、渗透系数测试仪、荧光显微镜对TPU/石墨烯改性聚氨酯注浆材料的密度、膨胀倍数、抗压强度、阻燃性能、渗透系数及微观形貌进行表征,深入分析了石墨烯和TPU的种类和含量对聚氨酯注浆材料基本物理性能、力学性能及微观结构的影响。结果表明,TPU/石墨烯改性聚氨酯注浆材料的密度为0.24~1.25 g/cm3,膨胀倍数最高可达38倍,抗压强度为15.0~43.8 MPa,相比普通聚氨酯注浆材料,改性聚氨酯注浆材料抗压强度提升1倍以上。酒精灯燃烧试验显示注浆材料无焰燃烧时间均小于20 s。石墨烯和TPU均可提高聚氨酯的强度和耐久性,改善TPU的微观形貌。TPU/石墨烯改性聚氨酯注浆材料表现出良好的强度、耐久性及弹性,是一种性能优异的注浆材料。  相似文献   

15.
用环氧氯丙烷(EPI)对氧化石墨烯(GO)进行共价键改性,制备了环氧改性氧化石墨烯(EPGO),再将EPGO共混水性聚氨酯(WPU)制得了含有不同质量分数EPGO(以水性聚氨酯有效质量计)的EPGO/WPU复合膜,通过FTIR、XRD、TEM表征了EPGO的结构和形态,并测试了成膜拉伸性能、耐磨性能。结果表明:EPGO的添加可以明显提高水性聚氨酯膜的拉伸强度,当添加0.8%(质量分数)的EPGO时,复合膜的拉伸强度达到12.9MPa,较空白膜提高了67.5%,杨氏模量提高了36.4%,且复合膜的耐磨性显著提高,表明EPGO的添加对水性聚氨酯膜有增强作用。  相似文献   

16.
以自制聚偏氟乙烯(polyvinyl fluoride,PVDF)膜为底膜,制备热塑性聚氨酯弹性体(thermoplastic polyurethane,TPU)平板膜,将其应用于渗透汽化汽油脱硫。采用扫描电镜等表征TPU膜的表面性能。对TPU膜进行渗透汽化性能评价,研究结果表明TPU膜的较佳制备工艺条件为:固含量9.1%,成膜温度40℃,刮膜厚度300μm,底膜PVDF;渗透汽化脱硫的较佳工艺条件为:操作温度80℃,渗透侧压力30~80 Pa,进料流量90 m L×min~(-1),此时测得膜通量达到5.49kg×m~(-2)×h~(-1),硫富集因子3.53。热塑性聚氨酯弹性体膜可以同时达到较大的通量和较高的硫富集因子,在渗透汽化汽油脱硫的工业化过程中具有很大的潜力。  相似文献   

17.
以纳米黏土为成核剂,偶氮二甲酰胺(AC)为化学发泡剂,对热塑性聚氨酯弹性体(TPU)进行注射发泡成型。研究了发泡体系中不同成核剂含量、不同发泡剂含量对TPU发泡制品的泡孔形态结构及力学性能的影响。结果表明,纳米黏土的添加有利于提高TPU注射发泡试样的发泡效果和回弹性能。当纳米黏土和AC发泡剂的质量分数分别为0.6%和3%时,可得到最佳的发泡效果和回弹性能。  相似文献   

18.
以聚酯二醇、二苯基甲烷二异氰酸酯和1,4-丁二醇为原料合成了热塑性聚氨酯(TPU)弹性体,研究了抗水解助剂聚碳化二亚胺(PCD)对TPU耐湿热性能的影响。结果表明,PCD的加入可以降低聚酯多元醇的初始酸值,从而抑制酸加剧水解的作用。随着PCD用量的增加,TPU的耐湿热性能增强。PCD使得低硬度的TPU以及高分子量聚酯二醇制备的聚酯型TPU耐湿热性能有更显著的改善,当添加质量分数为1.2%的PCD时,TPU可获得最佳的综合性能。  相似文献   

19.
朱俊荣  王潮霞 《精细化工》2021,38(12):2471-2477
以热塑性聚氨酯(TPU)母粒、碘化镍为原料,通过静电纺丝法制备了基于碘化镍/热塑性聚氨酯(NiI2/TPU)纳米纤维膜,将NiI2/TPU纳米纤维膜贴合在聚酰亚胺(PI)基叉指电极上制得湿度传感器.对纳米纤维膜的表面形貌及微观结构进行了表征分析,并研究了该传感器基于颜色变化和电阻电容响应的湿度敏感特性.结果表明,由于碘化镍的颜色变化特性,随相对湿度(RH)从0增加到97%,NiI2/TPU纳米纤维膜显示了从橘红色到黄绿色的颜色转变.此外,该湿度传感器表现出快速的响应/回复时间(0.9 s/9.9 s)、较宽的湿度监测区间(0~97%RH)、较小的洄滞度(0.4%RH)以及优异的稳定性能(>30 d).  相似文献   

20.
以热塑性聚氨酯(TPU)、单层纳米石墨烯(GR)通过溶液与熔融共混并用的方法制备TPU/GR共混物,利用不同牵引速度纺丝制得不同直径的TPU/GR复合纤维,对其进行超临界二氧化碳微孔发泡,制得发泡TPU/GR复合纤维,探究了GR在TPU中的分散性,纤维尺寸和GR含量对发泡TPU/GR复合纤维泡孔结构及力学性能的影响。结果表明:GR在TPU体系中具有良好的分散形态及较高的二氧化碳气体阻隔性能;当发泡TPU/GR复合纤维直径为200μm时,随着GR含量的增加,纤维的发泡面积逐渐变大,泡孔直径呈现先减少后增加的趋势;对于直径为500μm的发泡TPU/GR复合纤维,随着GR含量的增加,纤维的泡孔直径逐渐变小,泡孔密度逐渐增加,即当加入质量分数为5%的GR,纤维泡孔直径由原来未加GR时的3. 78μm降低至1. 97μm,泡孔密度由原来的未加GR时4. 93×10~9cells/cm~3增加至2. 42×10~(10)cells/cm~3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号