首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The two‐phase flow structure of an air‐water, bubbly, upward flow in a 20 cm diameter pipe is presented with particular emphasis on the local interfacial area concentration. The radial distribution of void fraction, bubble velocity, bubble size, bubble frequency, and interfacial area concentration were measured using a local dual‐optical probe. The experimental results showed that the saddle‐type distribution of void fraction and interfacial area concentration, which are common for bubbly flow in small diameter pipes, only appeared in the present experiments under conditions of very low area‐averaged void fraction (<?> < 0.04). The values for the interfacial area concentration were higher in large diameter pipes when compared with data obtained under the same flow conditions in small pipes. The area‐averaged void fraction data were correlated using the drift‐flux model.  相似文献   

2.
《分离科学与技术》2012,47(1-3):119-131
Abstract

In this paper we discuss the relationship between field-flow fractionation and split-flow thin (SPLITT) cell methodology, both of which utilize transverse driving forces to establish different transverse concentration profiles for various suspended particle populations carried by flow down a ribbonlike channel. It is shown that hydrodynamic lift forces can assume a particularly important role among the stable of forces available; when combined with certain other forces the lift forces lead to the formation of thin hyperlayers of particles distributed within the channel. The conditions necessary to split the channel flow into substreams containing different particle populations by SPLITT techniques are discussed. It is shown that the SPLITT system can be operated in either an equilibrium or a transport mode, both benefiting by the use of an inlet as well as an outlet flow splitter in the cell.  相似文献   

3.
庞明军  徐一丹  魏进家 《化工进展》2014,33(11):2829-2842,2867
对管道泡状流的相分布模式和分布机理进行了详细的回顾和介绍。从前人研究的结果发现,相分布与流动条件有关,对于小管径泡状上升流,相分布主要表现为壁面峰值分布、中间峰值分布、中心峰值分布、过渡分布和扁平分布模式;而对于小管径泡状下降流,相分布主要表现为偏离中心峰值分布、钟形分布和中心峰值分布模式。然而对于大管径泡状流,相分布与流向无关,主要表现为壁面峰值分布和中心峰值分布两种模式。除此之外,还存在双峰分布模式和双鞍分布模式。影响相分布的主要因素有气泡尺寸、管道尺寸、气液相速度、气泡的注入位置和注入方法、重力水平,而气泡尺寸为关键因素。调查发现,到目前为止仍未形成一个可以解释所有相分布模式的通用机理。部分物理现象仅通过分析升力、湍流扩散力、壁面斥力以及其他力的平衡给予定性分析。未来应进一步研究相间作用力模型、湍流相干结构对气泡输运机理等问题。  相似文献   

4.
Closure laws are needed for the qualification of CFD codes for two-phase flows. In case of bubbly and slug flow, forces acting on the bubbles usually model the momentum transfer between the phases. Several models for such forces can be found in Literature. They show, that these forces depend on the liquid flow field as well as on the size and the shape of the bubbles. A validation of consistent sets of bubble force models for poly-disperse flows is given, basing on a detailed experimental database for vertical pipe flows, which contains data on the radial distribution of bubbles of different size as well as local bubble size distributions. A one-dimensional (1D) solver provides velocity profiles and bubble distributions in radial direction. It considers a large number of bubble size classes and is used for the comparison with the experiments. The simplified model was checked against the results of full 3D simulations done by the commercial code CFX-5.7 for simplified monodisperse cases. The effects of the number of bubbles classes as well as the effect of the lateral extension of the bubbles were analyzed. For the validation of bubble force models measured bubble size distributions were taken as an input for the calculation. On basis of the assumption of an equilibrium of the lateral bubble forces, radial volume fraction profiles were calculated separately for each bubble class. In the result of the validation of different models for the bubble forces, a set of Tomiyama lift and wall force, deformation force and Favre averaged turbulent dispersion force was found to provide the best agreement with the experimental data. Some discrepancies remain at high liquid superficial velocities.  相似文献   

5.
In the present work, numerical simulation has been done to analyze transients in gas flow and pressure in a horizontal straight pipe. For a single gas pipeline, eight representative cases corresponding to different causes of transient behaviour are simulated to predict unsteady state flow and the evolution of pressure profiles. The numerical results show that depending upon the pipe dimensions and operating variables such as pressure and gas flow rate, transient effects in the pipeline may last for a long time and/or over significant length of pipe. The simulations predict an initial surge in gas flow rate greater than the final steady‐state value if the pressure drop across the pipe is increased. Similarly, initial flow rate may decrease below the final steady‐state value if the pressure drop is decreased. In case of complete closure of a valve, oscillations in both pressure and mass flow rate are observed, which gradually decay and the steady state conditions of no flow are ultimately achieved. The present results are compared with a published work from the literature. A reasonably good agreement is found between these two predictions. The present study is of practical significance in safe design and operation of a gas delivery system.  相似文献   

6.
Sedimentation/steric FFF has been used to measure hydrodynamic lift forces exerted on 2-30 μm latex microspheresdnven by flow through a 95 cm long ribbonlike FFF channel of ∼ 127 um thickness. Following a previous study, lift forces are examined as a function of shear rate, distance from the wall, and sphere size. Here, in contrast to the earlier study, measured lift forces are extended downward into a range corresponding to theoretical values of the inertial lift force. After corrections are made for secondary relaxation, it is found, as before, that a near-wall lift force proportional to l/δ (where δ is the particle-wall distance) dominates lift effects at small δ's. As δ increases and this force decays, the measured lift force assumes a value in good agreement with the inertial lift force predicted by the theory of Cox and Brenner as extended by subsequent workers. Over a broad range of conditions explored in almost 300 measurements, the results are consistent with a total lift force that equals the sum of near-wall and inertial contributions. Possible sources of error in the analysis are examined and various explanations for the near-wall lift force are discussed.  相似文献   

7.
The effect of interfacial forces and relevant closures, particularly the lift and wall lubrication forces, on the predictions of Eulerian‐Eulerian computational fluid dynamics simulations of bubbly flows was studied. The test case under study was a developing turbulent bubbly pipe flow, simulated by using OpenFOAM. The results show that the geometric approach to consider the wall effect leads to better agreement than a standard relation assuming asymmetric drainage around the bubble near the wall. Furthermore, the results verify the need for employing negative lift coefficients in cases with large bubbles. A sensitivity analysis on the lift coefficient highlighted the importance of investigating spatially developing flows to draw general conclusions on the applicability of closure relations.  相似文献   

8.
A flow field constructed by the superposition of a rotation and a simple shear flow contains a small particle. A shear induced lift force acts on it. The equations of motion of the particle, which include this lift force, are solved using a singular asymptotic expansion. Conditions are obtained under which the effect of the lift force on the trajectory of the particle leads to instability. It is shown that even when the instability is not attained, and the lift coefficient is much smaller than the critical one, the effect of the shear induced lift may still be quite large. An example of turbulent flow in a pipe demonstrates the appreciable effect of the lift force on the path traced by the particle.  相似文献   

9.
In this paper, a one-dimensional, transient theoretical model, the Piston Flow Model (PFM), based on momentum analysis, is proposed to predict the time dependent forces acting on horizontal pipe bends in slug flow. Our experimental apparatus is described and results there from are presented. The PFM has been validated by comparing its predictions with our experimental results for air–water slug flow. The pressure traces, force traces and maximum force predicted agree well with our measurements.  相似文献   

10.
The methodology of coupling large eddy simulation (LES) with the discrete element method was applied for computational studies of pneumatic transport of granular materials through vertical and horizontal pipes in the presence of electrostatic effects. The LES numerical results obtained agreed well with the law of the wall for various y+‐ranges. The simulations showed that a thin layer of particles formed and remained adhered to the pipe walls during the pneumatic conveying process due to the effects of strong electrostatic forces of attraction toward the pipe walls. Particle concentrations were generally higher near the pipe walls than at the pipe center resulting in the ring flow pattern observed in previous experimental studies. The close correspondence between particle velocity vectors and fluid drag force vectors was indicative of the importance of fluid drag forces in influencing particle behaviors. In contrast, the much weaker particle–particle electrostatic repulsion forces had negligible effects on particle behaviors within the system under all operating conditions considered. The electrostatic field strength developed during pneumatic conveying increased with decreasing flow rate due to increased amount of particle‐wall collisions. Based on dynamic analyses of forces acting on individual particles, it may be concluded that electrostatic effects played a dominant role in influencing particle behaviors during pneumatic conveying at low flow rates, whereas drag forces became more important at high flow rates. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

11.
A numerical procedure is presented which allows one to predict the deposition rate of microparticles suspended in a liquid flow onto the confining walls. Particle transport is not only diffusive but also affected by hydrodynamically induced lift force and reduced particle mobility. An appropriate expression for the lift‐induced migration is introduced into the numerical procedure. Its results agree quanititatively with previously published experimental data showing a significant effect of lift‐induced particle transport. Based on the numerical results algebraic correlations are obtained, which enable to calculate the particle deposition rate in situations where lift forces and mobility reduction diminishes the particle deposition rate.  相似文献   

12.
摇摆条件下附加惯性力的作用会对两相流动的压降及汽泡受力产生影响。考虑相变能量和质量输运,采用流体体积(VOF)多相流模型对附加惯性力条件下竖直矩形流道内过冷流动沸腾进行了数值模拟。汽液界面位置通过分段线性插值(PLIC)的方法获得。模拟结果获得了孤立汽泡周围压力、速度、温度分布以及二次流动现象,分析了汽泡聚合过程汽泡形态及内部速度矢量的演变过程,模拟结果与文献中结论吻合良好。附加惯性力作用使得流动压降比静止条件下要大,过冷流动沸腾压降由于汽相产生会在单相流动的基础上产生波动,且热通量越大,压降波动幅度越大。摇摆产生的附加惯性力相对汽泡所受的其他力而言可以忽略不计,而摇摆导致的流量波动会改变汽泡受力大小,进而影响沸腾换热。  相似文献   

13.
The activation of safety valves causes the development of flow reaction forces that have to be transferred in an adequate way via the piping to the steel structure or via the connected vessel into the foundation. If the safety valve outlet piping is connected to a blowdown system or, in case of blowing off into the atmosphere, are equipped with a T‐piece at the outlet, the stationary reaction forces are compensated completely. The transient opening process, however, develops flow reaction forces which culminate in peaks of short duration. In this article, a simple method will be proposed for the estimation of the resulting reaction forces as a function of the length of the pipe at the safety valve outlet. CFD calculations and blowdown tests executed with a full‐lift safety valve have confirmed this method on principle. Special importance is attributed to the short duration of the effect of the reaction forces which seems to have only a negligible impact on the supporting steel structure.  相似文献   

14.
Phase Doppler anemometry was used to quantify the flow characteristic of a three phases (liquid, solid, and bubbles) cylindrical bubble column driven by a point air source made of a 30‐mm diameter perforated air stone centrally mounted at the bottom. The cylindrical bubble column had an inner diameter of 152 mm and was filled with liquid up to 1 m above the point source. Acrylic beads with a nominal diameter of 3 mm were used as the solid phase. To match the density of the solid phase which was 1.05 kg/m3, the liquid density was raised to about 1.0485 kg/m3 by added salt. The bubble diameters generated were within the range of 600–2400 µm. The detailed turbulent characteristics of the liquid‐phase velocity, bubble diameter, bubble velocity, and solid velocity were measured at three different air rates, namely 0.4, 0.8, and 1.2 L/min (corresponding to average gas volume fraction of 0.0084, 0.0168, and 0.0258, respectively) for the homogeneous bubble column regime. With the addition of the solid phase, the flow field was found to be relatively steady compared to the two‐phase column referencing the probability density functions for both the liquid and bubble velocities. An analysis based on the determination of the drag forces and transversal lift forces was performed to examine the flow stability in the three‐phase bubble column. The analysis illustrated that how the added solid phase effectively stabilized the flow field to achieve a steady circulation in the bubble column and a generalized criterion for the flow stability in the three‐phase bubble column was derived. Further investigation for the transition and the heterogeneous bubble column regime with air rates at 2.0 and 4.0 L/min shown that this criterion can also be used as a general prediction of flow stability in this three‐phase bubble column. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2286–2307, 2013  相似文献   

15.
Numerical investigation of flow hydrodynamics in a square cross‐sectioned bubble column was conducted in a transient Euler‐Euler environment by applying the simulation tool Ansys CFX 14.0. The influence of the drag coefficient (CD) was investigated and the results were also compared with drag force models. Furthermore, three different lift force models and a defined lift coefficient were studied. All results were compared with the available experimental data. All simulations were carried out for a single‐hole sparger with given aspect ratio (H/D) and superficial gas velocity.  相似文献   

16.
Lift and drag forces on a sphere attached to a planar wall, over which a laminar flat plat boundary layer flows, are examined numerically in this study. Particle Reynolds number ranged from 0.1–250, which represents steady, laminar flow about the sphere, and the plate Reynolds number was held constant at 32 400. A finite-volume computational fluid dynamics program was utilised. Simulation results were validated against analytical results for drag and lift in creeping flow and against experimental results available in the literature for lift at higher particle Reynolds number. The model results were curve-fitted and interpolating drag and lift coefficient functions are reported. The lift and drag results are shown to be weakly dependent upon plate Reynolds number. The resulting correlations are expected to be useful in the development of particle impending motion and aerosol entrainment predictions of particles adhering to planar walls.  相似文献   

17.
We applied an Eulerian–Eulerian two‐fluid model on an upward dispersed oil–water flow in vertical pipe with 80 mm diameter and 2.5 m length. The numerical profiles of the radial distribution of the oil drops at 1.5 m from the inflow are compared to the experimental data of Lucas and Panagiotopoulos (Flow Meas Instrum. 2009;20:127–135) This article analyzes the roles of turbulence and interfacial forces on the phase distribution phenomenon. In liquid–liquid flow the relative velocity is low and the distribution of the dispersed phase is mainly governed by the turbulence. This work highlights the important role of the turbulent contribution obtained by averaging the added mass force on the radial distribution profiles of the oil drops. The numerical results present improved profiles of the dispersed phase comparing to the experimental data when this turbulent contribution is taken into account in the momentum balance. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4214–4223, 2017  相似文献   

18.
In recent years CFD has proven itself as a valuable tool for gaining insight in flow phenomena in general and complex multiphase flows arising in process equipment in particular. However for (dispersed) multiphase flows, the reliability of the outcome of these computations depends in a sensitive way on the correctness of the representation of the phase interactions (for instance due to drag and lift forces) which leads to the well-known and difficult closure problem. In this paper we report results of direct numerical simulations supplemented with dedicated experiments to obtain quantitative data for the representation of the lift force. This force is known to be responsible for the segregation of small and large (deformed) bubbles in bubbly flows through pipes and bubble columns.Both numerical simulations using an improved front tracking (FT) model and experiments under well-defined conditions have been performed for air bubbles rising through water/glycerine mixtures, where the bubble diameter, liquid viscosity and linear shear rate were varied. The numerical simulations show a good agreement with the correlation presented by Legendre and Magnaudet (1998) for spherical bubbles at sufficiently high Reynolds numbers. For large deformed bubbles a good agreement with the correlation by Tomiyama et al. (2002) was found over a wide range of liquid viscosities, although the computed lift force was always slightly lower. Therefore a new correlation has been proposed, which combines a fit of the numerical data for deformed bubbles with the correlation by Legendre and Magnaudet (1998) for small bubbles. Finally, it was shown that the shear rate has no significant influence on the drag and lift coefficient.An experimental set-up (similar to the one used by Tomiyama) was constructed using a running belt submerged in a liquid, consisting of a glycerine–water mixture of varying viscosity. PIV measurements have been used to calibrate the linear shear field and to obtain the flow profile around the bubbles. Contrary to the numerical simulations, the experimental data show a very strong influence of the shear rate on the lift force coefficient. This may be attributed to the rigid behaviour of the contaminated bubble surface, which changes the shear stress at the bubble interface.  相似文献   

19.
The formulas of polymer melt velocity, shearing rate, and shearing stress under vibration force field are established through simplifying coaxial cylinder circular flow into plane motional flow. On the basis of the concept of energy ratio model, the rate of energy dissipation and the energy ratio about blending systems are expressed, and the affected factors on phase morphology are studied theoretically. The calculated and analytical results of dynamic flow field and energy ratio show that with the increasing of vibration strength, the fluctuating shearing force field exerted on polymer melt and the negative pressure diffusion behavior of instantaneous impulse strengthen. The energy consumption for phase inversion of immiscible polymer blends under vibration force field is less than that of steady state. The parameter controllability of vibration force field provides a more effective method for realizing phase inversion of immiscible polymer blends. The analysis of transmission electron microcopy micrographs of ethylene–propylene–diene terpolymer/polypropylene blends verifies that the energy ratio model and its phase morphology controlling theory have a good coincidence in comparison with experimental results. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2299–2307, 2006  相似文献   

20.
The prediction of liquid–liquid two‐phase flow at a horizontal dividing T‐junction is re‐investigated, focusing on a stratified orientation of the liquids. Kerosene (as oil) and water as the test fluids of previous studies are used to predict the distribution of oil and water in a 0.025‐m diameter pipe and tee. In addition to the previously studied models, attempts are made to predict the split for liquid–liquid systems by the already known energy minimization. The earlier model, formulated from geometrical considerations and force balance resulting from centripetal as well as inertial forces, is refurbished by the addition of energy minimization for the calculation of phase depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号