共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了聚苯乙烯微发泡成型的原理,影响微发泡成型稳定的设备因素,针对单螺杆挤出机的驱动方式、传动方式、温度控制、螺杆结构、口模以及配套辅机进行了优化设计。 相似文献
2.
3.
In this research, the effect of crystalline fraction of polypropylene (PP) on cell nucleation behavior was overcome by an introduction of solvent‐plasticized step to the microcellular foaming in a solid‐state batch‐foaming process. Utilizing the plasticization performance of the solvent facilitated the PP to be foamed at the temperatures lower than its melting point with the dramatic development in the cellular morphology of the final foams. In consequence of the heterogeneous cell nucleation sites induction and the crystalline loss, which were induced by solvent, a high cell density (i.e., 109–1010 cells/cm3) was promoted without the cell sacrificing at the elevated temperatures (155 and 165°C) and favorable PP microcellular foams were accomplished. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
4.
In the past 3 decades, there has been great advancement in the preparation of microcellular thermoplastic polymer foams. However, little attention has been paid to thermoplastic elastomers. In this study, microcellular poly(ethylene‐co‐octene) (PEOc) rubber foams with a cell density of 2.9 × 1010 cells/cm3 and a cell size of 1.9 μm were successfully prepared with carbon dioxide as the physical blowing agent with a batch foaming process. The microcellular PEOc foams exhibited a well‐defined, closed‐cell structure, a uniform cell size distribution, and the formation of unfoamed skin at low foaming temperatures. Their difference from thermoplastic foam was from obvious volume recovery in the atmosphere because of the elasticity of the polymer matrix. We investigated the effect of the molecular weight on the cell growth process by changing the foaming conditions, and two important effect factors on the cell growth, that is, the polymer matrix modulus/melt viscoelastic properties and gas diffusion coefficient, were assessed. With increasing molecular weight, the matrix modulus and melt viscosity tended to increase, whereas the gas solubility and diffusion coefficient decreased. The increase in the matrix modulus and melt viscosity tended to decrease the cell size and stabilize the cell structure at high foaming temperatures, whereas the increase in the gas diffusion coefficient facilitated cell growth at the beginning and limited cell growth because most of the gas diffused out of the polymer matrix during the long foaming times or at high foaming temperatures. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
5.
Polyethylene‐octene elastomer (POE)/organoclay nanocomposite was prepared by melt mixing of the POE with an organoclay (Cloisite 20A) in an internal mixer, using poly[ethylene‐co‐(methyl acrylate)‐co‐(glycidyl methacrylate)] copolymer (E‐MG‐GMA) as a compatibilizer. X‐ray diffraction and transmission electron microscopy analysis revealed that an intercalated nanocomposite was formed and the silicate layers of the clay were uniformly dispersed at a nanometre scale in the POE matrix. The nanocomposite exhibited greatly enhanced tensile and dynamic mechanical properties compared with the POE/clay composite without the compatibilizer. The POE/E‐MA‐GMA/clay nanocomposite was used to produce foams by a batch process in an autoclave, with supercritical carbon dioxide as a foaming agent. The nanocomposite produced a microcellular foam with average cell size as small as 3.4 µm and cell density as high as 2 × 1011 cells cm?3. Copyright © 2005 Society of Chemical Industry 相似文献
6.
Solid‐state microcellular high temperature vulcanized (HTV) silicone rubber foam with carbon dioxide 下载免费PDF全文
Qian Yang Haitao Yu Lixian Song Yajie Lei Fengshun Zhang Ai Lu Tao Liu Shikai Luo 《应用聚合物科学杂志》2017,134(20)
A series of microcellular high temperature vulcanized (HTV) silicone rubber foams were prepared using CO2 as a physical blowing agent. Rheological properties, gas diffusive behavior, and foaming parameters of silicone rubber were investigated. The results show that saturation pressure has a significant effect on the diffusivity of CO2 in HTV silicone rubber matrix. The gas concentration and diffusivity increase from 2.45 wt % to 3.24 wt %, and from 1.62 × 10?5 cm2/s to 7.83 × 10?5 cm2/s as the saturation pressure increases from 2 MPa to 5 MPa, respectively. The value of the gas diffusivity in HTV silicone rubber is almost 1000 times higher than that of the gas diffusivity in polyetherimide (PEI) matrix. Additionally, microcellular HTV silicone rubber foams with the smallest cell diameter of 9.8 μm and cell density exceeding 108 cells/cm3 are achieved. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44807. 相似文献
7.
A new process was used to prepare microcellular foams with supercritical carbon dioxide as the physical foaming agent in a batch. The foaming temperature range of the new process was about five times broader than that of the conventional one. Characterization of the cellular structure of the original polypropylene (PP) and PP/nano‐CaCO3 (nanocomposites) foams was conducted to reveal the effects of the blend composition and processing conditions. The results show that the cellular structure of the PP foams was more sensitive to the foaming temperature and saturation pressure variations than that of the nanocomposite foams. Uniform cells of PP foams are achieved only at a temperature of 154°C. Also, the low pressure of 20 MPa led to very small cells and a low cell density. The competition between the cell growth and cell nucleation played important role in the foam density and was directly related to the foaming temperature. Decreasing the infiltration temperature depressed the initial foaming temperature, and this resulted in significantly larger cells and a lower cell density. A short foaming time led to a skin–core structure; this indicated that a decrease in the cell size was found from skin to core, but the skin–core structure gradually disappeared with increasing foaming time. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
8.
Poly(o‐toluidine) ( POT) has been electrodeposited on brass from an aqueous salicylate solution by using cyclic voltammetry, and its corrosion protection performance has been evaluated by potentiodynamic polarization technique and electrochemical impedance spectroscopy in aqueous 3% NaCl solution. The corrosion potential was about 0.115 V vs. SCE more positive for the POT‐coated brass than that of uncoated brass and reduces the corrosion rate of brass almost by a factor of 800. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
9.
Microcellular polymeric foam structures have been generated using a pressure‐induced phase separation in concentrated mixtures of supercritical CO2 and styrene‐co‐acrylonitrile (SAN). The process typically generates a microcellular core structure encased by a non‐porous skin. Pore growth occurs through two mechanisms: diffusion of CO2 from polymer‐rich regions into the pores and also through CO2 gas expansion. The effects of saturation pressure, temperature and swelling time on the cell size, cell density and bulk density of the porous materials have been studied. Higher CO2 pressures (hence, higher fluid density) provided more CO2 molecules for foaming, generated lower interfacial tension and viscosity in the polymer matrix, and thus produced lower cell size but higher cell densities. This trend was similar to what was observed in swelling time series. While the average cell size increased with increasing temperature, the cell density decreased. The trend of bulk density was similar to that of cell size. © 2000 Society of Chemical Industry 相似文献
10.
Flame‐retardant mechanism of expandable polystyrene foam with a macromolecular nitrogen–phosphorus intumescent flame retardant 下载免费PDF全文
Expandable polystyrene (EPS) foam is largely used as the thermally insulating external wall in buildings and constructions, but it is extremely flammable because of the presence of almost 98% air into its porous structure, its high surface‐area‐to‐mass ratio, and its elemental composition. Lots of serious fire disasters caused by EPS foam have posed great threats to people's properties and lives in recent years. Thus, a halogen‐free, flame‐retardant EPS is urgently needed, and its preparation is still a global challenge. To solve the problem that it is easy for EPS foam to form melt dripping and difficult for it to generate a char layer during the combustion process, a macromolecular nitrogen–phosphorus intumescent flame retardant (MNP) was selected to prepare flame‐retardant EPS foam and good mechanical and flame‐retardant properties were obtained. The scanning electron microscopy characterization revealed that MNP could penetrate into the gap between the beads, and a thin physical coating layer formed on the surface of the bead. The data from the thermogravimetry–Fourier transform infrared test indicated that a nitrogenous noncombustible gas was generated by the pyrolysis of MNP. When the MNP content increased to 30%, the limiting oxygen index and the smoking density rate of the EPS–MNP foam were 28.8 and 23.6, respectively, and a UL94 V‐0 classification was achieved. In addition, the heat‐release rate, total heat‐release, smoke produce rate, and carbon dioxide production of the EPS–MNP foams all decreased obviously; this was attributed to the flame‐retardant effects of MNP in both the condensed and gas phases. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44356. 相似文献
11.
S. N. Goyanes 《应用聚合物科学杂志》2000,75(7):865-873
Results of the dynamic mechanical behavior of atactic polystyrene (PS) and high‐impact polystyrene (HIPS) for temperatures between 300 and 425 K at a frequency of the order of 50 kHz are presented. The storage Young's modulus, (E′), of the HIPS is lower than the PS value, being the relationship between them a function of the rubber phase volume fraction, independent of the measurement frequency. The glass transition temperature (Tg) of HIPS is shifted to lower temperature in respect to the PS. The γ relaxation appears at 308 K in PS at 50 kHz, while it seems to move toward lower temperatures in the HIPS. Both shifts are attributed to the presence of mineral oils in the HIPS. The values of E′, Tg, and the temperature of the γ relaxation at 50 kHz are discussed within the scope of the theory of viscoelasticity. Finally, the effect of thermal treatments, using different annealing times, on the behavior of both materials is shown. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 865–873, 2000 相似文献
12.
Single‐walled carbon nanotubes (SWCNTs) dispersed in N‐methylpyrrolidone (NMP) were functionalized by addition of polystyryl radicals from 2,2,6,6‐tetramethyl‐1‐piperidinyloxy‐ended polystyrene (SWCNT‐g‐PS). The amount of polystyrene grafted to the nanotubes was in the range 20‐25 wt% irrespective of polystyrene number‐average molecular weight ranging from 2270 to 49 500 g mol?1. In Raman spectra the ratios of D‐band to G‐band intensity were similar for all of the polystyrene‐grafted samples and for the starting SWCNTs. Numerous near‐infrared electronic transitions of the SWCNTs were retained after polymer grafting. Transmission electron microscopy images showed bundles of SWCNT‐g‐PS of various diameters with some of the polystyrene clumped on the bundle surfaces. Composites of SWCNT‐g‐PS in a commercial‐grade polystyrene were prepared by precipitation of mixtures of the components from NMP into water, i.e. the coagulation method of preparation. Electrical conductivities of the composites were about 10?15 S cm?1 and showed no percolation threshold with increasing SWCNT content. The glass transition temperature (Tg) of the composites increased at low filler loadings and remained constant with further nanotube addition irrespective of the length and number of grafted polystyrene chains. The change of heat capacity (ΔCp) at Tg decreased with increasing amount of SWCNT‐g‐PS of 2850 g mol?1, but ΔCp changed very little with the amount of SWCNT‐g‐PS of higher molecular weight. The expected monotonic decrease in ΔCp coupled with the plateau behavior of Tg suggests there is a limit to the amount that Tg of the matrix polymer can increase with increasing amount of nanotube filler. Copyright © 2012 Society of Chemical Industry 相似文献
13.
A novel selective interlamellar modification of cetyltrimethylammonium bromide‐exchanged montmorillonite (MMT) by toluene‐2,4‐di‐isocyanate (TDI) has been successfully obtained, and a polystyrene/TDI‐modified MMT hybrid has been prepared. After the interlamellar modification, TDI was grafted to hydroxyl groups of the MMT, and the orientation of cetyltrimethylammonium in the interlayer space changed from a bilayer lying flat structure to a double‐layer inclined one. The structures of the TDI‐modified MMT and the hybrid were characterized by Fourier transform infrared (FTIR) spectra, powder X‐ray diffraction (XRD), and transmission electron microscopy (TEM) techniques. A schematic model of the TDI‐modified MMT structure was also presented. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2201–2205, 2000 相似文献
14.
Bo Zheng Hexian Li Guochang Wang Kun Liu Lin Wang Guiling Pan 《Polymer International》2009,58(4):343-347
BACKGROUND: Polystyrene/polystyrene (PS/PS) interpenetrating polymer networks (IPNs) represent ideal homo‐IPNs. Whether phase separation occurs in this system has been a long‐standing problem, which is closely related to the self‐organization mechanism in IPN formation and is important to the exploration of new polymer morphologies and properties by topological isomerism. RESULTS: A series of bead samples of PS/PS sequential IPNs with the same nominal divinylbenzene contents were synthesized by suspension polymerization, followed by sulfonation. Scanning electron micrographs and energy‐dispersive X‐ray mapping show unique distinctive topography on both surfaces and fractured surfaces and large heterogeneity in sulfonation of the PS/PS IPN beads, which for the first time provide visual evidence for dual‐phase continuity in PS/PS IPNs. CONCLUSION: The phase separation behavior is proposed to be due to hydrodynamic screening, architectural asymmetry and excluded volume interactions between network I and the precursor chains of network II. This is considered to represent pure IPN effects in sequential formation and may shed light on the general constitution mechanism and molecular design of IPN materials. Copyright © 2009 Society of Chemical Industry 相似文献
15.
The crystallization behaviors, dynamic mechanical properties, tensile, and morphology features of polyamide1010 (PA1010) blends with the high‐impact polystyrene (HIPS) were examined at a wide composition range. Both unmodified and maleic‐anhydride‐(MA)‐grafted HIPS (HIPS‐g‐MA) were used. It was found that the domain size of HIPS‐g‐MA was much smaller than that of HIPS at the same compositions in the blends. The mechanical performances of PA1010–HIPS‐g‐MA blends were enhanced much more than that of PA1010–HIPS blends. The crystallization temperature of PA1010 shifted towards higher temperature as HIPS‐g‐MA increased from 20 to 50% in the blends. For the blends with a dispersed PA phase (≤35 wt %), the Tc of PA1010 shifted towards lower temperature, from 178 to 83°C. An additional transition was detected at a temperature located between the Tg's of PA1010 and PS. It was associated with the interphase relaxation peak. Its intensity increased with increasing content of PA1010, and the maximum occurred at the composition of PA1010–HIPS‐g‐MA 80/20. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 857–865, 1999 相似文献
16.
Craig Beyler 《火与材料》2006,30(3):215-221
Rubbers, including styrene‐butadiene rubber (SBR), are well known to be susceptible to self‐heating. SBR is used in a wide range of applications and is often produced in the form of a crumb which is then used to form the final product. The crumb may be transported and stored in large quantities. Self‐heating properties of a SBR crumb have been determined using standard oven methods. The results indicate that self‐heating is a real hazard for SBR crumb. The results are generally consistent with recent measurements by Clothier and Prichard (Combust. Flame 2003; 133 :207–210) for rubber tyre crumb. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
17.
The cell nucleation and real‐time cell growth with increasing cell growth time in microcellular foaming were investigated by means of temperature quenching in a supercritical CO2 pressure‐quench process. Samples of uniform size and shape were saturated in a vessel under conditions of 100–180°C and 30 MPa, and then depressurized to the atmosphere in 10 s. After depressurization, these samples were removed from the vessel at prescribed intervals, and immediately immersed in an ice‐water slurry to obtain foamed samples with various cell growth times. It was found that the nucleation density is closely correlated to the gas absorption capacity of the polymer matrix, so that the final cell density should not be adopted as the nucleation density, as done commonly. The change of cell structure and mass density with increasing cell growth time was dominated by gas diffusion behavior, which was strongly influenced by the temperature. The final cell structure was mainly determined by the cell growth step, where gas diffusion played a key role. The final cell density was in direct proportion to the gas remaining in the substrate, which ranged from 6.0 × 109 to 4.7 × 106 cells/cm3. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 163–171, 2004 相似文献
18.
Structural investigations of PTFE‐g‐polystyrene sulfonic acid membranes prepared by radiation grafting of styrene onto PTFE were conducted by X‐ray photoelectron spectroscopy (XPS). The analyzed materials included original PTFE film as a reference material, grafted film, and sulfonated membrane samples having various degrees of grafting. Interest is focused on C1s, F1s, O1s, and S2p of narrow XPS spectra as the basic elemental components of the membrane. The original PTFE film was found to undergo structural changes in terms of chemical composition and shifting in binding energy induced by incorporation of sulfonated polystyrene grafts, and the amount of such changes depends on the degree of grafting. The atomic ratio of F/C was found to decrease with the increase in the degree of grafting, while that for S/C and O/C were found to increase. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 336–349, 2000 相似文献
19.
Dachao Li Tao Liu Ling Zhao Weikang Yuan 《American Institute of Chemical Engineers》2012,58(8):2512-2523
Controlling sandwich‐structure of poly(ethylene terephthalate) (PET) microcellular foams using coupling of CO2 diffusion and CO2‐induced crystallization is presented in this article. The intrinsic kinetics of CO2‐induced crystallization of amorphous PET at 25°C and different CO2 pressures were detected using in situ high‐pressure Fourier transform infrared spectroscopy and correlated by Avrami equation. Sorption of CO2 in PET was measured using magnetic suspension balance and the diffusivity determined by Fick's second law. A model coupling CO2 diffusion in and CO2‐induced crystallization of PET was proposed to calculate the CO2 concentration as well as crystallinity distributions in PET sheet at different saturation times. It was revealed that a sandwich crystallization structure could be built in PET sheet, based on which a solid‐state foaming process was used to manipulate the sandwich‐structure of PET microcellular foams with two microcellular or even ultra‐microcellular foamed crystalline layers outside and a microcellular foamed amorphous layer inside. © 2011 American Institute of Chemical Engineers AIChE J, 58: 2512–2523, 2012 相似文献
20.
Polystyrene cation exchange membranes were prepared by a PVC‐based semi‐interpenetrating polymer network (IPN) method. The reaction behaviors during polymerization and sulfonation in the preparation method were investigated. The prepared membranes were characterized in terms of the physical and electrochemical properties. The membranes exhibited reasonable mechanical properties (tensile strength, 13 MPa, and elongation at break, 52%) for an ion‐exchange membrane with the ratio of polystyrene–divinylbenzene (DVB)/poly(vinyl chloride) (PVC) (RSt‐DVB/PVC) of below 0.9. Fourier transform infrared/attenuated total reflectance, differential scanning calorimetry, and scanning electron microscopy studies revealed the formation of a homogeneous membrane. The resulting membrane showed membrane electrical resistance of 2.0 Ω cm2 and ion‐exchange capacity of 3.0 meq/g dry membrane. The current–voltage (I–V) curves of the membrane show that the semi‐IPN polystyrene membranes can be properly used at a high current density, and that the distribution of cation‐exchange sites in the membrane was more homogenous than that in commercial membranes. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1488–1496, 2003 相似文献