共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
以中国某海上风电场筒型基础为研究对象,识别其建造期的风险源,并建立风险指标体系,然后基于改进的模糊故障树方法量化筒型基础建造期的整体风险发生概率,并与单桩基础结果进行对比。研究结果表明:筒型基础及单桩基础结构建造期的风险发生概率分别为3.21×10-3、9.47×10-3。依据DNV规范规定的失效频率等级可知,海上风电筒型基础及单桩基础结构建造期的风险等级均为高风险,但单桩基础的风险概率明显高于筒型基础,高约66.10%,筒型基础建造期的风险更低,工程实用性强。 相似文献
5.
疲劳是控制海上风电基础结构安全的主要因素之一,针对海上风电全钢质新型筒型基础结构疲劳问题展开研究,基于随机波浪理论与频谱分析方法,阐述了长期海况分布下结构交变应力服从Rayleigh分布的疲劳损伤累积计算方法;借助全钢质海上风电筒型基础基于前述理论开展了疲劳损伤与寿命计算,获得筒型基础主要的疲劳破坏点集中在斜撑与圆柱体连接的位置,并基于此进行了结构局部优化,结果对比表明关键部位的几何优化可极大降低应力集中程度,减小疲劳累积损伤,同时也验证了疲劳计算结果对热点应力水平具有高敏感性。 相似文献
6.
7.
以中国福建某较深海域风电场为背景,提出一种海上风电宽浅型三筒导管架基础结构,继而通过建立考虑分层土体的基础整体有限元模型,对分层土中宽浅型三筒导管架基础静动力特性及浮运稳性展开研究。研究结果表明,正常荷载作用下此基础结构法兰倾斜率为3.98‰,满足规范要求:极限荷载作用下,基础结构各部位应力满足要求;基础-塔筒-机组整体共振校核满足要求:基础可在4级风浪以内的海况下进行自浮远距离拖航浮运;等效疲劳荷载作用下,基础结构疲劳损伤满足要求。 相似文献
8.
9.
目的 随着对清洁能源的需求进一步扩张,近年来海上风电行业的发展突飞猛进,而筒型基础凭借其经济性好、施工方便、可回收利用等优点成为海上风电基础的优选项。由于我国地震带分布广泛,海上风电基础的抗震性能是结构安全性中必须考虑的一环。筒型基础结构刚度较大,地震对结构自身产生破坏的概率较低,风电基础在地震作用下的失效主要是地基土的液化造成的。文章对砂土地基中海上风电筒型基础的抗震性能展开研究。 方法 通过振动台试验对筒型基础砂土地基的抗液化性能进行了分析,研究对象包括砂土地基中的4种筒型基础。4种筒型基础形式分别为单筒型基础、复合筒型基础、三筒型及四筒型导管架基础。 结果 试验获得了不同型式筒型基础的砂土地基超孔压比,阐明了筒型基础及其砂土地基的抗震机理。 结论 筒型基础可以通过上部结构的附加荷载效应和筒壁及分舱板的环箍效应削弱砂土的剪缩性,进而提高其抗液化能力。将单筒型基础与复合筒型基础、三筒导管架基础与四筒导管架基础的试验结果进行比较,发现复合筒型基础和四筒导管架基础在砂土地基中的抗震性能分别优于单筒型基础和三筒导管架基础。 相似文献
10.
11.
12.
13.
14.
根据某3.3 MW海上风电筒型基础整机运输期原型观测数据,首先采用加速度响应探究环境要素对整机振动影响。其次依据应变-荷载原理计算塔筒底部截面弯矩,并统计全程计算弯矩幅值,分析塔筒承受荷载随环境要素变化规律。结果表明:1)波高从0.2 m增加到2.0 m时,加速度均方根增加98%,波高是引起整机耦联振动的主要因素;2)波高小于1.0 m时,塔筒底部识别弯矩在0~10 MN∙m范围内波动,占设计弯矩的21.5%,波高增加到1.5 m时,识别弯矩幅值基本在10~25 MN∙m范围内波动;3)波高达到2.0 m时,塔筒底部弯矩幅值达32 MN∙m,占设计弯矩的68.9%,整机结构仍在安全范围内;4)运输期根据波浪条件预测制定运输方案,整机应在不超过2.0 m波高条件下运输,保证整机结构有富裕的安全空间。 相似文献
15.
针对多筒型基础气浮过程中的动力及运动响应问题,设计了筒间距为2.5倍筒直径的四筒型基础,通过比尺为1∶25的物理模型试验并结合数值模拟的方法,对结构在静水中的自振特性和规则波下运动响应的变化规律进行研究。研究结果表明:建立的数值分析模型能够较好地预测结构静水中自振特性以及波浪中运动响应的变化趋势;随着吃水的增加,该四筒型基础的有阻尼摇荡自振周期呈增大的趋势,而附加质量系数和阻尼比呈下降的趋势,结构摇荡运动的附加质量系数取值在1.4~1.7之间变化;吃水的增加能够改善结构的摇荡运动性能,但是增大了结构的垂荡响应以及接近纵摇角最大幅值的周期范围;水越浅,摇荡运动越大。 相似文献
16.
针对某筒型基础海上风电结构,基于实测振动响应数据,采用随机子空间法对所测海上风电结构的阻尼进行识别,研究海上风电筒型基础结构在停机及运行状态下阻尼的变化规律。结果表明:在停机状态下,海上风电筒型基础结构的顺风向阻尼和横风向阻尼均随外界风速的增大呈增长趋势,两者的平均值分别为0.952%和0.973%;当风电机组处于运行状态时,顺风向运行阻尼随外界风速的增大呈增长趋势,阻尼平均值在3.87%~5.28%之间变化,而对于横风向运行阻尼,其变化趋势受外界因素的影响较小,阻尼平均值在整个风速范围内在1.74%~3.37%之间变化,横风向运行阻尼小于顺风向运行阻尼。 相似文献
17.
18.
以三筒型基础为研究对象,分析吸力筒筒高、加载角度、加载速度以及排水条件对其承载性能的影响。研究表明,在其他3种影响因素不变的情况下,随着筒裙高度的增大,三筒基础的水平承载力提高;不排水条件下,加载速度明显影响筒型基础水平承载力和筒内孔隙水压力,排水条件下加载速度对筒型基础的水平承载力影响有限;加载角度不同,筒型基础的水平承载力最大增加1倍;不排水条件较排水条件可致使水平极限承载力最大增幅达149%。因此,实际工程中,沉放三筒型基础后,宜关闭筒顶阀门,有助于筒型基础保持较好的水平承载能力。 相似文献
19.