共查询到20条相似文献,搜索用时 15 毫秒
1.
面向选区激光熔化(Selective laser melting, SLM)增材制造轻质高强多孔结构的需求,采用拓扑优化设计方法,通过调节孔隙率和载荷施加位置对正六面体进行结构优化,得到了点、线和面拓扑多孔结构,并利用SLM技术制备了AlSi10Mg多孔结构试样。通过压缩试验测试多孔结构的力学性能,采用有限元法分析多孔结构的破坏机理。结果表明,随着孔隙率的增加,点、线和面拓扑多孔结构的屈服强度和弹性模量逐渐降低。有限元分析表明,面拓扑多孔结构的应力分布是最均匀,在相同压缩位移下,面拓扑多孔结构的力学性能最佳,线拓扑多孔结构次之,点拓扑多孔结构的力学性能最差。该结果证明了面拓扑优化是三种优化方式中最理想的一种。采用经典的Gibson-Ashby模型建立了力学性能与几何参数之间的数学关系,可用来预测三种多孔结构的孔隙率与力学性能关系,为多孔结构的应用提供了理论依据。 相似文献
3.
采用选区激光熔化成形(SLM)技术制备CoCrFeNiCuAl0.8高熵合金,研究了不同激光热输入(0.06~0.36 J·mm-1)下合金的成形质量和密度,确定最优成形工艺参数,并分析了在最优成形工艺参数下合金的显微组织和拉伸性能。结果表明:随着热输入的增加,SLM成形合金的密度先增大,当热输入大于0.15 J·mm-1时,密度基本保持不变;当热输入为0.34 J·mm-1时,密度最大,为7.5 g·cm-3,最优工艺参数为激光功率270 W、扫描速度800 mm·s-1。SLM成形合金具有由无序体心立方相(A2相)和有序体心立方相(B2相)组成的双相结构,显微组织由柱状晶和等轴晶组成,屈服强度、抗拉强度、断后伸长率、断面收缩率分别为651 MPa, 840 MPa, 22%,23%,断裂机制为韧性断裂。 相似文献
4.
5.
基于三周期极小曲面设计梯度 Ti6Al4V 多孔支架,并采用选区激光熔化打印成形,分析边缘孔隙率Pout、中心孔隙率Pin和平均孔隙率■对力学性能和能量吸收的影响。研究结果表明:相同■的梯度多孔支架弹性模量、抗压强度和单位体积的总吸收能量 WV都随着 Pout的增大而减小,随着 Pin的增大而增大;不同 ■的梯度多孔支架弹性模量、抗压强度和 WV随着 ■的增大而减小;P-对其弹性模量、抗压强度和 WV的影响大于 Pin、Pout的影响。打印成形的梯度多孔支架能够满足股骨和胫骨的弹性模量、抗压强度要求,建立的力学性能模型可为面向骨科医学多孔支架的应用提供参考。 相似文献
7.
能量密度对激光选区熔化成形AlSi10Mg合金缺陷及力学性能的影响 总被引:1,自引:0,他引:1
分析了能量密度对激光选区熔化成形AlSi10Mg合金致密度的影响规律,并采用微纳CT检测结合EDS能谱分析的方法,统计了试样内部缺陷的类型和尺寸,分析了缺陷在试样三维层面上的分布规律及产生原因,得出了影响激光选区熔化成形AlSi10Mg合金致密度和内部缺陷的主要因素。结果表明,合适的激光能量输入是获得高致密度的关键,当激光能量密度处于47.62~50.00 J/mm3区间时,试样致密度最高,此时试样中夹杂缺陷消失,孔洞缺陷最大尺寸降至0.056 mm。孔洞缺陷产生原因主要与未熔粉体、空心粉及氧化物有关。在优选激光能量密度区间内成形的AlSi10Mg合金试样,其平均抗拉强度和伸长率分别在294 MPa和8.0%以上,优于铸造AlSi10Mg合金。 相似文献
8.
10.
针对单一熔池特征对选区激光熔化缺陷预测精度不高的问题,提出了一种基于熔池特征融合的选区激光熔化过程缺陷预测机器学习模型。利用红外热像仪拍摄选区激光熔化过程中的熔池红外图像,检测工件中的缺陷并对其相对应的熔池红外图像进行类型标定。通过提取拍摄的熔池红外图像中熔池的灰度梯度特征、尺寸特征和形状特征,融合特征向量后得到新的特征向量,并传入K-邻近算法(KNN)中进行缺陷分类和缺陷预测,并通过比较算法预测缺陷的准确率确定K值。结果表明,运用这种融合特征分类KNN算法对选区激光熔化缺陷预测的准确率可达97.5%,相比单一熔池特征缺陷预测方法效果有较大的提升。 相似文献
11.
12.
采用激光选区熔化技术直接成形Ti-6Al-4V钛合金静力试验件,对部分试验件进行热处理或热等静压处理,并对三种状态的部分试验件进行表面打磨,通过试验对比研究了热处理/热等静压、表面处理等后处理工艺对激光选区熔化Ti-6Al-4V力学性能的影响。采用光学显微镜和扫描电镜对不同状态试验件的微观组织和断口形貌进行了观察,分析力学性能变化的原因。热处理和热等静压后,激光选区熔化Ti-6Al-4V钛合金试验件的极限强度有所下降,但延伸率提高约50%,韧性增强。表面打磨处理使热等静压态试验件屈服和极限强度均提高了约30 MPa,但未引起沉积态和热处理态试验件力学性能的明显改变。 相似文献
13.
采用选区激光熔化(SLM)技术制备纯锌,研究了激光功率和扫描速度对其相对密度和力学性能的影响。结果表明:随激光功率增大或扫描速度减小,SLM成形纯锌的相对密度和硬度增大,显微组织均为平行于成形方向生长的柱状晶;SLM成形纯锌的最佳工艺参数为激光功率100 W、扫描速度300mm·s-1,所得试样的相对密度达99.86%,硬度为(44.7±1.2)HV,弹性模量、断后伸长率、抗拉强度、屈服强度分别为(48.6±2.4)GPa、(8.9±0.7)%、(95.5±3.3)MPa、(67.1±0.4)MPa。 相似文献
14.
采用机械球磨和激光选区熔化成形方法,制备了不同TiB2质量分数(0.6%,1.2%,1.8%)的TiB2/4Cr13钢复合材料,研究了TiB2含量对复合材料物相组成、微观形貌、硬度、耐磨性能和耐腐蚀性能的影响。结果表明:复合材料由α-Fe、γ-Fe、TiB2等相组成;随着TiB2含量的增加,复合材料的相对密度降低;当TiB2质量分数为0.6%时,复合材料的组织最为细小均匀,随着TiB2含量的继续增加,晶粒尺寸增大,且组织中出现裂纹、微孔等缺陷;随着TiB2含量增加,复合材料的硬度降低,摩擦因数和磨损率增大,点蚀和自腐蚀电位降低,自腐蚀电流密度增大,耐腐蚀性能变差。 相似文献
15.
16.
增材制造以灵活的结构设计与制造手段为NiTi形状记忆合金提供了更多可能的应用,然而激光增材成形制造完全致密的NiTi复杂结构构件仍存在挑战。研究激光扫描速度对Ni50.9Ti49.1(at%)粉末成型试样致密度和组织形貌的影响规律具有重要意义。所选的400~1 400 mm/s工艺窗口内,试样致密度均大于99%。但当扫描速度大于600 mm/s时底部会产生裂纹。优选打印速度400 mm/s的拉伸实验结果表明:沉积态试样和热处理试样平均抗拉强度分别为675 MPa和782 MPa,最大延伸率分别为19.7%和和17.95%,即500℃退火热处理后试样抗拉强度提升,但延伸率下降。沉积态和热处理态试样断裂机制为脆性与塑性断裂共同作用的准解理断裂机制。通过DSC实验测得热处理后试样的马氏体相变和逆相变起始温度Ms和As分别为35.8℃、10.0℃。温度介于二者之间时,合金由奥氏体、马氏体两相组成,EBSD结果表明20℃室温下试样主要由B19’马氏体构成。 相似文献
17.
为选择合适的工艺参数实现微型器件的选区激光熔化直接成形,利用ANSYS有限元软件对成形过程的温度场进行了分析。结果表明,温度场的形貌大致呈椭圆形,熔池位置滞后于激光光斑位置,粉末层最高温度、熔池最大宽度和深度均随着扫描速度的增加而减小、随着激光功率的增加而增大。根据分析结果选择合适的工艺参数,当光斑直径为50μm、粉末层厚为30μm、激光功率为200W、扫描速度为800mm/s和扫描间距为100μm时,成形的效果最好,制备出了具有较高精度和物理性能的微型钻头。 相似文献
18.
19.
采用316L不锈钢粉末基于选区激光熔化技术(Selective Laser Melting,SLM)制备压缩试样,观测其宏观组织形貌,随后进行压缩实验,获得工程应力-应变曲线及材料参数;利用ABAQUS/STANDARD有限元分析模块模拟试样压缩过程,得出仿真工程应力-应变曲线,将其与实验工程应力-应变曲线比较,验证材料参数设置准确性;最后构建规则栅格孔结构模型与交错栅格孔结构模型,利用ABAQUS/EXPLICIT有限元分析模块模拟落体冲击实验与摆锤冲击实验。结果表明:相同宏观体积条件下,基于SLM制备交错栅格孔结构不锈钢材料在落体冲击实验中对冲击能的消耗高于规则栅格孔结构部件,而在摆锤冲击实验中冲击性能差异不显著。 相似文献