首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new monomer, 1,2,3‐tris(ethoxycarbonyl)‐2‐propyl acrylate (TPA), was synthesized by reaction of acryloyl chloride and triethyl citrate. The homopolymer of TPA and its copolymers with acrylic acid (AA), vinyl acetate (VAc) and maleic anhydride (MAH) were prepared by polymerization using lauroyl peroxide (LPO) at 70 °C for 24 h. The structures of TPA and its polymers were identified by FTIR, 1H NMR, 13C NMR spectroscopies, and elemental analysis. The number average molecular weights and polydispersity indices of the synthesized polymers determined by GPC were in the range 4200–23 000 g mol?1 and 1.1–2.1, respectively. The IC50 values of the synthesized samples against cancer cell lines were greater than those of 5‐fluorouracil (5‐FU). The percentage inhibition values of SV40 DNA replication were 82.2 for TPA, 34.3 for poly (TPA), 81.9 for poly(TPA‐co‐AA), 82.0 for poly(TPA‐co‐VAc), 35.6 for poly(TPA‐co‐MAH) and 12.7 for 5‐FU. The inhibitions of SV40 DNA replication and antiangiogenesis for the synthesized TPA and its polymers are much greater than those of the control. © 2001 Society of Chemical Industry  相似文献   

2.
A new monomer, vinyl‐(5‐fluorouracil)‐ethanoate (VFUE), was synthesized by reaction of 5‐fluorouracil (5‐FU) and vinyl iodoacetate. The homopolymer of VFUE and its copolymers with acrylic acid (A, A) and maleic anhydride (MAH) were prepared by photopolymerization. The synthesized VFUE and polymers were identified by FTIR, 1H NMR and 13C NMR spectroscopies. The contents of VFUE unit in poly(VFUE‐co‐AA) and poly(VFUE‐co‐MAH) were 21 mol% and 16 mol%, respectively. The number average molecular weights of the polymers determined by gel permeation chromatography were in the range 9600–17900 g mol?1. The in vitro cytotoxicities of the samples against a normal cell line decreased as follows: 5‐FU > VFUE > poly(VFUE) > poly(VFUE‐co‐AA) > poly(VFUE‐co‐MAH). The in vivo antitumour activities of the polymers against Balb/C mice bearing the sarcoma 180 tumour cells were greater than those of 5‐FU at all concentrations. The inhibition of simian virus 40 DNA replication by the samples was much greater than that of the control. © 2002 Society of Chemical Industry  相似文献   

3.
The attachment of anticancer agents to polymers is a promising approach towards reducing the toxic side‐effects and retaining the potent antitumour activity of these agents. A new tetrahydrophthalimido monomer containing 5‐fluorouracil (ETPFU) and its homopolymer and copolymers with acrylic acid (AA) and with vinyl acetate (VAc) have been synthesized and spectroscopically characterized. The ETPFU contents in poly(ETPFU‐co‐AA) and poly(ETPFU‐co‐VAc) obtained by elemental analysis were 21 mol% and 20 mol%, respectively. The average molecular weights of the polymers determined by gel permeation chromatography were as follows: Mn = 8900 g mol?1, Mw = 13 300 g mol?1, Mw/Mn = 1.5 for poly(ETPFU); Mn = 13 500 g mol?1, Mw = 16 600 g mol?1, Mw/Mn = 1.2 for poly(ETPFU‐co‐AA); Mn = 8300 g mol?1, Mw = 11 600 g mol?1, Mw/Mn = 1.4 poly(ETPFU‐co‐VAc). The in vitro cytotoxicity of the compounds against FM3A and U937 cancer cell lines increased in the following order: ETPFU > 5‐FU > poly(ETPFU) > poly(ETPFU‐co‐AA) > poly(ETPFU‐co‐VAc). The in vivo antitumour activities of all the polymers in Balb/C mice bearing the sarcoma 180 tumour cell line were greater than those of 5‐FU and monomer at the highest dose (800 mg kg?1). © 2002 Society of Chemical Industry  相似文献   

4.
A new monomer, methacryloyl‐2‐oxy‐1,2,3‐propane tricarboxylic acid (MTCA), was synthesized from citric acid and methacrylic anhydride. Poly(methacryloyl‐2‐oxy‐1,2,3‐propane tricarboxylic acid) and poly(methacryloyl‐2‐oxy‐1,2,3‐propane tricarboxylic acid)‐co‐(maleic anhydride) were prepared by radical polymerizations. Terpoly(methacryloyl‐2‐oxy‐1,2,3‐propane tricarboxylic acid–maleic anhydride–furan) was obtained by in situ terpolymerization of MTCA and exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalic anhydride. The synthesized samples were identified by FTIR, 1H NMR and 13C NMR spectroscopies. The number‐average molecular weights of the fractionated polymers determined by GPC were in the range 14 900–16 600 and polydispersity indices were less than 1.14. The in vitro IC50 values of the monomer and polymers against cancer and normal cell lines were much higher than those of 5‐fluorouracil (5‐FU). The in vivo antitumour activities of the synthesized samples at a dosage of 0.8 mg kg−1 against mice bearing the sarcoma 180 tumour cell line decreased in the order terpoly(MTCA‐MAH‐FUR) > poly(MTCA‐co‐MAH) > poly(MTCA) > MTCA > 5‐FU. The synthesized samples inhibited DNA replication and angiogenetic activity more than did 5‐FU. © 2001 Society of Chemical Industry  相似文献   

5.
A new monomer, exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalimidocaproic acid (ETCA), was prepared by reaction of maleimidocaproic acid and furan. The homopolymer of ETCA and its copolymers with acrylic acid (AA) or with vinyl acetate (VAc) were obtained by photopolymerizations using 2,2‐dimethoxy‐2‐phenylacetophenone as an initiator at 25 °C. The synthesized ETCA and its polymers were identified by FTIR, 1H NMR and 13C NMR spectroscopies. The apparent average molecular weights and polydispersity indices determined by gel permeation chromatography (GPC) were as follows: Mn = 9600 g mol?1, Mw = 9800 g mol?1, Mw/Mn = 1.1 for poly(ETCA); Mn = 14 300 g mol?1, Mw = 16 200 g mol?1, Mw/Mn = 1.2 for poly(ETCA‐co‐AA); Mn = 17 900 g mol?1, Mw = 18 300 g mol?1, Mw/Mn = 1.1 for poly(ETCA‐co‐VAc). The in vitro cytotoxicity of the synthesized compounds against mouse mammary carcinoma and human histiocytic lymphoma cancer cell lines decreased in the following order: 5‐fluorouracil (5‐FU) ≥ ETCA > polymers. The in vivo antitumour activity of the polymers against Balb/C mice bearing sarcoma 180 tumour cells was greater than that of 5‐FU at all doses tested. © 2001 Society of Chemical Industry  相似文献   

6.
A series of novel copolymers, poly(methacryloyl‐2‐oxy‐1,2,3‐propanetricarboxylic acid‐coexo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalic acid) [poly(MTCA‐co‐ETAc)], poly(methacryloyl‐2‐oxy‐1,2,3‐propanetricarboxylic acid‐co‐hydrogenethyl‐exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalate) [poly(MTCA‐co‐HEET)], and poly(methacryloyl‐2‐oxy‐1,2,3‐propanetricarboxylic acid‐co‐α‐ethoxy‐exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthaloyl‐5‐fluorouracil) [poly(MTCA‐co‐EETFU)], were prepared from corresponding monomers by photopolymerizations at 25°C for 48 h. The polymers were identified by FTIR, 1H‐NMR, and 13C‐NMR spectroscopies. The number‐average molecular weights of the fractionated polymers determined by GPC were in the range from 9400 to 14,900 and polydispersity indices were 1.2–1.4. The in vitro IC50 values of polymers against mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937) as cancer cell lines and mouse liver cells (AC2F) as a normal cell line were much higher compared to that of 5‐fluorouracil (5‐FU). The in vivo antitumor activities of monomers and polymers against mice bearing sarcoma 180 tumor cell line were better than those of 5‐FU. The inhibition of DNA replication and antiangiogenesis activities of MTCA and copolymers were better compared to those of 5‐FU. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 57–64, 2004  相似文献   

7.
The new monomer, 5′-O-methacryloyl-3′-azido-3′-deoxythymidine (MAZT), was synthesized by the reaction of methacryloyl chloride and 3′-azido-3′-deoxythymidine (AZT). Poly(MAZT) and copolymers of MAZT with vinyl acetate (VAc) and maleic anhydride (MAH) were synthesized by radical polymerizations. The synthesized MAZT and polymers were identified by 1H nuclear magnetic resonance (NMR), 13C NMR, elemental analysis and gel permeation chromatography. The quantities of MAZT units in poly(MAZT-co-VAc) and poly(MAZT-co-MAH) were 45 and 27 mol%, respectively. The weight average molecular weights of the polymers synthesized were in the range from 8800 to 17600. The in vitro cytotoxicities of samples against K562 human leukaemia cell line at 100 μg ml-1 decreased in the following order: poly(MAZT-co-MAH) > poly(MAZT-co-VAc) > poly(MAZT) > MAZT > AZT. The in vivo anti-tumour activities of the polymers synthesized against Balb/C mice bearing sarcoma 180 tumour cells were greater than those of 5-fluorouracil at all concentrations.  相似文献   

8.
Poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid), poly(methacrylic acid), and five copolymers of poly[(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid)‐co‐(methacrylic acid)] were synthesized by radical polymerization and obtained in yields >97%. The polymers were characterized by FT‐IR, [1H]NMR, and [13C]NMR and studied by means of the Liquid‐phase Polymer‐based Retention (LPR) technique. The metal ion retention ability of the copolymers for Cu(II), Cd(II), Co(II), Hg(II), Ni(II), Zn(II), Cr(III) and Ag(I) was investigated at different pH values because of their environmental and analytical interest. The retention profiles of the copolymers were compared with those of the corresponding homopolymers and retention of metal ions was found to increase with increasing pH. © 2001 Society of Chemical Industry  相似文献   

9.
Attachment of anticancer agents to polymers has been demonstrated to improve their therapeutic profiles. A new monomer containing camptothecin, 5‐norbonene‐endo‐2,3‐dicarboxylimidoundecanoyl‐camptothecin (NDUCPT) and its homopolymer and copolymer with acrylic acid (AA) were synthesized and spectroscopically characterized. The NDUCPT content in poly(NDUCPT‐co‐AA) obtained by elemental analysis was 51%. The average molecular weights of the polymers determined by gel permeation chromatography were as follows: Mn = 12 100, Mw = 23 400 g mol?1, Mw/Mn = 1.93 for poly(NDUCPT), Mn = 15 400, Mw = 28 300 g mol?1, Mw/Mn = 1.83 for poly(NDUCPT‐co‐AA). The IC50 value of NDUCPT and its polymers against U937 cancer cells was larger than that of CPT. The in vivo antitumour activity of all polymers in Balb/C mice bearing the sarcoma 180 tumour cell line was greater than that of CPT at a dose of 100 mg kg?1. Copyright © 2003 Society of Chemical Industry  相似文献   

10.
The electrostatic charge dissipative (ESD) properties of conducting self‐doped and PTSA-doped copolymers of aniline (AA), o‐methoxyaniline (methoxy AA) and o‐ethoxyaniline (ethoxy AA) with 3‐aminobenzenesulfonic acid (3‐ABSA) blended with low‐density polyethylene (LDPE) were investigated in the presence of external dopant p‐toluenesulfonic acid (PTSA). Blending of copolymers with LDPE was carried out in a twin‐screw extruder by melt blending by loading 1.0 and 2.0 wt% of conducting copolymer in the LDPE matrix. The conductivity of the blown polymers blended with LDPE was in the range 10?12–10?6 S cm?1, showing their potential use as antistatic materials for the encapsulation of electronic equipment. The DC conductivity of all self‐doped homopolymers and PTSA‐doped copolymers was measured in the range 100–373 K. The room temperature conductivity (S cm?1) of self‐doped copolymers was: poly(3‐ABSA‐co‐AA), 7.73 × 10?4; poly(3‐ABSA‐co‐methoxy AA), 3.06 × 10?6; poly(3‐ABSA‐co‐ethoxy AA), 2.99 × 10?7; and of PTSA‐doped copolymers was: poly(3‐ABSA‐co‐AA), 4.34 × 10?2; poly(3‐ABSA‐co‐methoxy AA), 9.90 × 10?5; poly(3‐ABSA‐co‐ethoxy AA), 1.10 × 10?5. The observed conduction mechanism for all the samples could be explained in terms of Mott's variable range hopping model; however, ESD properties are dependent upon the electrical conductivity. The antistatic decay time is least for the PTSA‐doped poly(3‐ABSA‐co‐AA), which has maximum conductivity among all the samples. © 2013 Society of Chemical Industry  相似文献   

11.
Poly(N‐isopropylacrylamide‐co‐acrylic acid) (poly(NIPAM‐co‐AA)) microgels with different copolymer compositions were prepared through soap‐free emulsion polymerization at 80°C, and 2, 2′‐azobisisobutyronitrile (AIBN) was used as initiator. Scanning electron microscope (SEM) characterization shows that the prepared microgels are regular and smooth and not easy to distort. Result of 1H‐NMR characterization shows that with increasing of the initial concentration of AA (AA in feed), the AA content in polymer chains increases. The thermal response of microgels latex was investigated by UV‐3010 spectrophometer through detecting the transmittance of the latex at different temperature in the range of 190–900 nm. The thermal response of the poly(NIPAM‐co‐AA) microgels was tested by dynamic light scattering (DLS). The results show that with the increase of AA content in polymer chains, the low critical solution temperature (LCST) of microgels latex first decreases and then increases. Still, with increasing of AA in poly(NIPAM‐co‐AA) microgels, the LCST of microgels first increases and then decreases. The basic reasons causing the changes of LCST of microgels latex and microgels are interpreted clearly in this article from the perspective of hydrogen bonding interaction. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
The monomer, exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic glycinyl imide(ETGI), was prepared by the Diels-Alder reaction of N-glycinylmaleimide and furan. Poly(ETGI), poly(ETGI-co-methacrylic acid)[poly(ETGI-co-MA)] and poly(ETGI-co-vinylacetate)[poly(ETGI-co-VAc)] were synthesized by photoinitiated homopolymerization of ETGI or copolymerizations of ETGI with MA and VAc. Synthesized ETGI, poly(ETGI), poly(ETGI-co-MA), and poly(ETGI-co-VAc) were characterized by IR and 1H-NMR spectroscopies, elemental analysis, and gel permeation chromatography. The in vitro cytotoxicities of ETGI, poly(ETGI), poly(ETGI-co-MA), and poly(ETGI-co-VAc) were evaluated using K-562 human leukemia cells and HeLa cells. In vitro cytotoxicity of monomer and polymers at a concentration of 1.0 mg/mL against K-562 human leukemia cells increased in the following order:poly(ETGI-co-MA) > poly(ETGI-co-VAc) > poly(ETGI) > Etgi. The cytotoxicities of copolymers against HeLa cells are less cytotoxic than ETGI at a dosage of 0.02, 1.0, and 5.0 mg/mL. The copolymers were very effective at any dosage tested. The in vivo antitumor activities of ETGI, poly(ETGI), poly(ETGI-co-MA), and poly(ETGI-co-VAc) were also evaluated against mice bearing sarcoma 180. In vivoantitumor activity of monomer and polymers at a dosage of 80 mg/kg increased in the following order: ETGI > poly(ETGI-co-VAc) > poly(ETGI-co-MA) > poly(ETGI) > 5-fluorouracil (5-FU).ETGI and polymers containing ETGI showed higher antitumor activity than 5-FU at any dosage tested. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
A family of new polymers based on poly(4‐(1‐hydroxyalkyl)styrene), and its copolymers with styrene were synthesized and thoroughly characterized by 1H‐NMR, 13C‐NMR, FTIR, and UV spectroscopies. The chemical modification reactions of polystyrene (PS) was used as a novel method of performing the synthesis of poly(4‐(1‐hydroxyethyl‐co‐styrene)), poly(4‐(1‐hydroxypropyl‐co‐styrene)), poly(4‐(1‐hydroxybutyl‐co‐styrene)), and poly(4‐(1‐hydroxyphenylmethyl‐co‐styrene)). The novelty of this method lies in the incorporation of the desired mol % of the functional groups in polystyrene chain, to obtain random copolymers of desired composition. In preliminary testing/evaluation studies the utility and versatility of the new copolymers, which have the potential to be negative‐tone photoresist materials, were studied. Thus a few photoresist formulations based on poly(styrene‐co‐4‐(1‐hydroxyalkylstyrene)) were developed with 5 wt % of a photoacid generator. These studies suggested that the new copolymers synthesized by a simple and alternate method could have the same potential as a photoresist material when compared with the polymers synthesized by the polymerization of the corresponding functional monomer. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1902–1914, 2004  相似文献   

14.
pH and thermo‐responsive graft copolymers are reported where thermo‐responsive poly(N‐isopropylacrylamide) [poly(NIPAAm), poly A ], poly(N‐isopropylacrylamide‐co‐2‐(diethylamino) ethyl methacrylate) [poly(NIPAAm‐co‐DEA), poly B ], and poly(N‐isopropylacrylamide‐co‐methacrylic acid) [poly(NIPAAm‐co‐MAA), poly C ] have been installed to benzaldehyde grafted polyethylene glycol (PEG) back bone following introducing a pH responsive benzoic‐imine bond. All the prepared graft copolymers for PEG‐g‐poly(NIPAAm) [ P‐N1 ], PEG‐g‐poly(NIPAAm‐co‐DEA) [ P‐N2 ], and PEG‐g‐poly(NIPAAm‐co‐MAA) [ P‐N3 ] were characterized by 1H‐NMR to assure the successful synthesis of the expected polymers. Molecular weight of all synthesized polymers was evaluated following gel permeation chromatography. The lower critical solution temperature of graft copolymers varied significantly when grafted to benzaldehyde containing PEG and after further functionalization of copolymer based poly(NIPAAm). The contact angle experiment showed the changes in hydrophilic/hydrophobic behavior when the polymers were exposed to different pH and temperature. Particle size measurement investigation by dynamic light scattering was performed to rectify thermo and pH responsiveness of all prepared polymers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
In this study, synthesis, characterization, partial hydrolysis, and salt formation of poly(2‐hydroxyethyl methacrylate)‐co‐poly(4‐vinyl pyridine), (poly(HEMA)‐co‐poly‐(4‐VP)) copolymers were investigated. The copolymers were synthesized by free radical polymerization using K2S2O8 as an initiator. By varying the monomer/initiator ratio, chain lengths of the copolymers were changed. The copolymers were characterized by gel permeation chromatography (GPC), viscosity measurements, 1H and 13C NMR and FTIR spectroscopies, elemental analysis, and end group analysis methods. The copolymers were partially hydrolyzed by p‐toluene sulfonic acid monohydrate (PTSA·H2O) and washed with LiOH(aq) solution to prepare electrorheological (ER) active ionomers, poly(Li‐HEMA)‐co‐poly(4‐VP). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3540–3548, 2006  相似文献   

16.
A series of poly(ester amide)s were synthesized by solution polycondensations of various combinations of p‐toluenesulfonic acid salts of O,O′‐bis(α‐aminoacyl)‐1,4:3,6‐dianhydro‐D ‐glucitol and bis(p‐nitrophenyl) esters of aliphatic dicarboxylic acids with the methylene chain lengths of 4–10. The p‐toluenesulfonic acid salts were obtained by the reactions of 1,4:3,6‐dianhydro‐D ‐glucitol with alanine, glycine, and glycylglycine, respectively, in the presence of p‐toluenesulfonic acid. The polycondensations were carried out in N‐methylpyrrolidone at 40°C in the presence of triethylamine, giving poly(ester amide)s having number‐average molecular weights up to 3.8 × 104. Their structures were confirmed by FTIR, 1H‐NMR, and 13C‐NMR spectroscopy. Most of these poly(ester amide)s are amorphous, except those containing sebacic acid and glycine or glycylglycine units, which are semicrystalline. All these poly(ester amide)s are soluble in a variety of polar solvents such as dimethyl sulfoxide, N,N‐dimethylformamide, 2,2,2‐trifluoroethanol, m‐cresol, pyridine, and trifluoroacetic acid. Soil burial degradation tests, BOD measurements in an activated sludge, and enzymatic degradation tests using Porcine pancreas lipase and papain indicated that these poly(ester amide)s are biodegradable, and that their biodegradability markedly depends on the molecular structure. The poly(ester amide)s were, in general, degraded more slowly than the corresponding polyesters having the same aliphatic dicarboxylic acid units, both in composted soil and in an activated sludge. In the enzymatic degradation, some poly(ester amide)s containing dicarboxylic acid components with shorter methylene chain lengths were degraded more readily than the corresponding polyesters with Porcine pancreas lipase, whereas most of the poly(ester amide)s were degraded more rapidly than the corresponding polyesters with papain. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2721–2734, 2001  相似文献   

17.
A new blue fluorescent monomer, 9,10‐di(1‐naphthalenyl)‐2‐vinylanthracene, was designed and synthesized in good yield. Its homopolymer poly(9,10‐di(1‐naphthalenyl)‐2‐vinylanthracene) (P(ADN)) and soluble conductive vinyl copolymers poly[(9,10‐di(1‐naphthalenyl)‐2‐vinylanthracene)‐co‐styrene] (P(ADN‐co‐S)) and poly[(9,10‐di(1‐naphthalenyl)‐2‐vinylanthracene)‐co‐(9‐vinylcarbazole)] (P(ADN‐co‐VK)) were synthesized using free radical solution polymerization. All the polymers showed high glass transition mid‐point temperatures (203 to 237 °C) and good thermal stabilities. The photoluminescence emission of the copolymers was similar to that of P(ADN) (with two maxima at 423 and 442 nm). The lifetimes of P(ADN‐co‐S) (6.82 to 7.91 ns) were all slightly less than that of P(ADN) (8.40 ns). The lifetime of P(ADN‐co‐VK) increased from 7.8 to 8.8 ns with an increase in VK content. The fluorescence quantum yields of P(ADN‐co‐S) showed an overall increasing tendency from 0.42 to 0.58. The quantum efficiencies of P(ADN‐co‐VK) decreased from 0.36 to 0.19 with an increase of VK fraction. With increasing S/VK content, the highest occupied molecular orbital of P(ADN‐co‐S)/P(ADN‐co‐VK) ranged from ?5.58 to ?5.73 eV, which was similar to that of P(ADN) (?5.71 eV). The band gaps of P(ADN‐co‐S) and P(ADN‐co‐VK) were about 2.97 eV, which were equal to that of P(ADN), and smaller than that of 2‐methyl‐9,10‐di(1‐naphthalenyl)anthracene (MADN) (3.04 eV) and poly(9‐vinylcarbazole) (3.54 eV). Preliminary electroluminescence results were obtained for a homojunction device with the configuration ITO/MoO3 (20 nm)/P(ADN)/LiF (1 nm)/Al (100 nm), which achieved only 30–50 cd m?2, due to P(ADN) having a low mobility of 4.7 × 10?8 cm2 V?1 s?1 compared to that of its model compound MADN of 6.5 × 10?4 cm2 V?1 s?1. © 2013 Society of Chemical Industry  相似文献   

18.
A series of pH‐temperature dual stimuli‐responsive random copolymers poly[N,N‐dimethylaminoethyl methacrylate‐co‐poly(poly(ethylene glycol) methyl ether methacrylate][poly(DMAEMA‐co‐MPEGMA)] were synthesized by free radical polymerization. The supramolecular hydrogel was formed by pseudopolyrotaxane, which was prepared with the host‐guest interactions between α‐cyclodextrin (α‐CD) and poly(ethylene glycol) (PEG) side chains. Fourier transform infrared (FT‐IR), nuclear magnetic resonance (1H NMR), and X‐ray diffraction (XRD) confirmed the structures of the hydrogels. The pH‐temperature dual stimuli responsive properties of the hydrogels were characterized by rheometer. Finally, the controllable drug release behavior of the hydrogel, which was used 5‐fluorouracil (5‐Fu) as the model drug, was investigated at different temperatures and different pH values. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43279.  相似文献   

19.
Two novel phenyl‐substituted poly(p‐phenylene vinylene) derivatives, poly{2‐[3′,4′‐(2″‐ethylhexyloxy)(3″,7″‐dimethyloctyloxy)benzene]‐1,4‐phenylenevinylene} (EDP‐PPV) and poly{2‐[3′,4′‐(2″‐ethylhexyloxy)(3″,7″‐dimethyloctyloxy)benzene]‐5‐methoxy‐1,4‐phenylenevinylene} (EDMP‐PPV), and their copolymer, poly{2‐[3′,4′‐(2″‐ethylhexyloxy)(3″,7″‐dimethyloctyloxy)benzene]‐1,4‐phenylene‐vinylene‐co‐2‐[3′,4′‐(2″‐ethylhexyloxy)(3″,7″‐dimethyloctyloxy)benzene]‐5‐methoxy‐1,4‐phenylenevinylene} (EDP‐co‐EDMP‐PPV; 4:1, 1:1, and 1:4), were successfully synthesized according to the Gilch route. The structures and properties of the monomers and the resulting conjugated polymers were characterized with 1H‐NMR, 13C‐NMR, elemental analysis, gel permeation chromatography, thermogravimetric analysis, ultraviolet–visible absorption spectroscopy, and photoluminescence and electroluminescence (EL) spectroscopy. The EL polymers possessed excellent solubility in common solvents and good thermal stability with a 5% weight loss temperature of more than 380°C. The weight‐average molecular weights and polydispersity indices of EDP‐PPV, EDMP‐PPV, and EDP‐co‐EDMP‐PPV were 1.40–2.58 × 105, and 1.19–1.52, respectively. Double‐layer light‐emitting diodes with the configuration of indium tin oxide/polymer/tris(8‐hydroxyquinoline)aluminum/Al devices were fabricated, and EDP‐co‐EDMP‐PPV (1:1) showed the highest EL performance and exhibited a maximum luminance of 1050 cd/m2 at 19.5 V. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1259–1266, 2005  相似文献   

20.
Radical copolymerizations of 1‐vinyl‐2‐pyrrolidone with acrylamide and N,N′‐dimethylacrylamide at different feed ratios were investigated. The copolymers were characterized by Fourier transform infrared spectroscopy, 1H NMR, and 13C NMR spectroscopy. The copolymer composition was determined from the 1H NMR spectra and found to be statistical. The metal complexation of poly(acrylamide‐co‐1‐vinyl‐2‐pyrrolidone) and poly(N,N′‐dimethylacrylamide‐co‐1‐vinyl‐2‐pyrrolidone) for the metal ions Cu(II), Co(II), Ni(II), Cd(II), Zn(II), Pb(II), Fe(III), and Cr(III) were investigated in an aqueous phase. The liquid‐phase polymer‐based retention method is based on the retention of inorganic ions by soluble polymers in a membrane filtration cell and subsequent separation of low‐molecular compounds from the polymer complex formed. The metal ion interaction with the hydrophilic polymers was determined as a function of the pH and the filtration factor. Poly(N,N‐dimethylacrylamide‐co‐1‐vinyl‐2‐pyrrolidone) showed a higher affinity for the metal ions than poly(acrylamide‐co‐1‐vinyl‐2‐pyrrolidone). According to the interaction pattern obtained, Cr(III) and Cu(II) formed the most stable complexes at pH 7. Pb(II) and Zn(II) were not retained. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 741–750, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号