首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Films of polymer metal oxide composites with poly(methyl methacrylate) and metallic powders (CuO, Ni, and brushed Fe3O4) were prepared with a spin‐casting method. Electric transport studies indicated that the compositions surpassed the percolation threshold limit. Alternating current (AC) conductivity studies confirmed a hopping mechanism with power‐law behavior in frequency. For the first time, the mobility values of the carriers in these films were measured by the contactless microwave Hall effect technique with a bimodal cavity operating at 14 GHz. In this technique, a circular bimodal cavity is used to measure the change in the transmission coefficient (proportional to the carrier mobility) due to the application of a static magnetic field perpendicular to the microwave electric fields. The mobility measurements indicated a decrease in mobility with increasing quantity of CuO and Ni and showed an increase in the carrier–lattice scattering, whereas the mobility increased with increasing Fe3O4 due to the negative magneto resistance. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Polycaprolactone (PCL)/starch and PCL/starch/pine‐leaf composites, which can be possibly applied as biodegradable food packaging materials with natural pine flavor, were prepared and characterized in this study. The effect of incorporating a silane coupling agent at different content levels on the physical properties and morphology of the composites was studied. To investigate the melting behavior of the composites, a differential scanning calorimetry was employed. A universal testing machine was used to investigate the tensile properties of the composites and the water absorption properties of the composites were also investigated. Scanning electron microscope was used to investigate the morphology of the composites. The physical properties and morphology of the PCL/starch and PCL/starch/pine‐leaf composites were largely affected by the composition, especially the content of the silane coupling agent. The silane coupling agent led to a much better interfacial compatibility between the PCL matrix and the fillers and resulted in better physical properties of the composites. The PCL/starch/pine‐leaf composite with the silane coupling agent showed a morphology, indicating a good interfacial adhesion between the PCL matrix and the fillers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 928–934, 2007  相似文献   

3.
Depending on the processing conditions in liquid crystal (LC) display manufacturing, LC/polymer composite films may exhibit unusual properties with respect to the compositional and phase behavior of the LC constituents. In particular, we have observed extraordinary large shifts of phase transition temperatures in LC/polymer composites, which can not be explained by preferential solvation or adsorption. Therefore, the influence of real manufacturing conditions such as thermal stress, storage in vacuum, and UV irradiation on the nematic–isotropic (n–i) transition temperatures of commercial nematic mixtures was investigated. Shifts of the clearing temperature of up to 88 K, presumably due to partial evaporation or UV degradation, were observed. Furthermore, we found that annealing may lead to the replacement of the nematic phase by the smectic A phase at room temperature in both LC/polymer composites and pure LC samples. Among the tested commercial LC blends, the mixtures E7, MLC‐6650, and L101 showed the smallest stress effects. Practical consequences of our results are discussed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Unsaturated polyester and epoxy resin matrices were filled with silane‐treated cellulose fibers and the ensuing composites were tested in terms of mechanical properties before and after accelerated aging consisting of their immersion into water. The coupling agents used were γ‐aminopropyltriethoxysilane (APS), γ‐methacrylopropyltrimethoxysilane (MPS), hexadecytrimethoxysilane, and γ‐mercaptopropyltrimethoxysilane (MRPS) and those containing reactive functions capable of reacting at one end with the fibers and at the other with the matrix, namely, APS, MPS, and MRPS, were more efficient in improving the mechanical properties of the composites. The immersion into water induced a drastic loss of mechanical properties of the materials. The water uptake of the composites was also studied and showed that the silane treatment was poorly efficient in preventing cellulose from water absorption. The fracture surfaces were inspected by scanning electron microscopy, which confirmed the quality of the interface. These observations were in agreement with the results obtained from the dynamic mechanical characterization. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 974–984, 2005  相似文献   

5.
The blend materials from waterborne polyurethane (WPU)/starch (ST) with different contents (10–90 wt %) were satisfactorily prepared by using the solution casting method. Their miscibility, structure, and properties were investigated by wide‐angle X‐ray diffraction (WAXD), scanning electron microscope (SEM), different scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and the tensile tests, respectively. The results indicated that tensile strength of composite materials not only depended on the starch content, but also related to the microstructure of WPU. The sample WPU2 (1.75 of NCO/OH molar ratio) exhibited hard‐segment order, but WPU1 (1.25 of NCO/OH molar ratio) had no hard‐segment order. The appropriate starch filled into WPU not only decreased the ordered region of soft‐segment matrix, but also hindered the formation of hard‐segment ordered structure. The blend material from 80 wt % WPU1 and 20 wt % starch exhibited better tensile strength (27 MPa), elongation at break (949%), and toughness than others. With an increase of starch content, the WPU matrix with dispersed starch in the blends transited to dual‐phase continuity and then to starch matrix with dispersed WPU. The results suggested that a certain extent of miscibility existed between WPU and starch in the blend materials on the whole composition ratio. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3325–3332, 2003  相似文献   

6.
Clay–starch composites with different aggregate sizes and starch to clay ratios were prepared by a simple precipitation method. The aggregates of the composites were used as fillers to improve the paper properties. The experimental results showed that the paper strengths increased more than 100% for starch‐modified clay compared to untreated clay at 20–30% clay loading. The increase in paper strengths of clay–starch composite‐filled handsheets was mainly due to two reasons, i.e., the relatively large aggregate size and the improved internal bonding. The optical properties compared at same mechanical strength were also improved. The water solubility of starch in the clay–starch composite was less than 3% at 50°C for 30 min, and it could be further reduced by adding crosslinker. Bonding sites between composite and fiber were investigated by scanning electron microscope. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1032–1038, 2006  相似文献   

7.
Foamed paperboard is a composite material used in thermally insulated food packaging and beverage containers. The paperboard is sandwiched between a layer of low‐density polyethylene and a barrier layer, and the low‐density film is foamed through heating. The moisture inside the paperboard vaporizes and serves as the driving force for creating the foam. The bubble growth on the paper surface has been tracked with high‐speed photography. The number of generated bubbles has been found to depend on the number of pores on the surface of the paperboard; there is little or no dependence on the properties of the polymer, at least across the range of properties studied. In contrast, the thickness of the foam is relatively insensitive to the paperboard properties but has a strong dependence on the thickness of the initial polymer film, the nature of the polymer, and the speed at which it is extruded onto the paperboard. It is believed that some of these variations arise from differences in the degree of adhesion between the polymer and the paperboard. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
Simple water treatment devices are designed to treat small amounts of drinking water for home use. This study was undertaken to develop an iodine‐releasing polymeric formulation and examine its potential as a domestic water purifier for untreated surface water. The antimicrobial tablet formulation was made from gum arabic (GA), poly(vinylalcohol) (PVA), ethyl cellulose (EC), and poly(vinylpyrrolidone)‐iodine (PVP‐I). The formulation consisted of a dispersible core tablet surrounded by a hydrophilic coating of EC and poly(ethylene glycol) mixture. These stable, non‐vaporizing, and water‐insoluble tablets slowly release iodine through diffusion over 48 h when suspended in water. The swelling behavior and release were observed to be the functions of excipient composition, iodine loading, and coating materials. Iodine release was determined by UV–VIS spectroscopy and volumetric titrations. The tablets were also assessed for antimicrobial activity against Escherichia coli, Staphylococcus aureus, Listeria monocytogenes Scott A, and Salmonella typhimurium. The disinfection efficiency of the developed tablets was compared with a commercial formulation (Potable Aqua®) as both contain iodine‐releasing active compounds and work on the antimicrobial property of released iodine. The difference between the two formulations is that water‐dispersible Potable Aqua® has a higher amount of free iodine quickly available in water thereby making it a fast‐action emergency water purifier, whereas the developed water‐insoluble polymer–iodine tablets act slowly and require 24 h to show the same disinfection efficacy with lower content of iodine in water. Overnight release of iodine in water from polymer–iodine tablets was effective in 99.9% reduction of an initial cell count of ~ 107 colony forming units (cfu)/mL. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
In recent years, the rapid deterioration of various reinforced concrete structures has been a widely recognized problem in the world. Penetration of chloride ions into the concrete structures was found to be the major cause of premature corrosion of reinforcing steel and to promote their deterioration. The present articles deals with the resistance to chloride penetration of polymer‐mortar, which are often used as low‐cost promising materials for preventing or repairing various reinforced concrete structures. To gain more knowledge on the efficiency of polymer‐mortar, four mortar mixtures: one specimen with Portland cement (control sample) and three mixtures with 2.5, 5, and 7.5 wt % of the replacement of cement by polyethylene terephthalate (PET) were tested for chloride ion permeability under immersion in 5% sodium chloride solution. Their chloride ion penetration behavior is discussed by applying Fick's second law. In conclusion, the chloride ion penetration depth and apparent chloride ion diffusion coefficient of the polymer‐mortar composites are smaller than those of unmodified mortar. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Any quantitative information on the strength of interactions between an inorganic filler and polymer is substantial for the future application of the composite. The magnitude of adhesion of two phases may be deduced from results collected by various experimental techniques. A Flory–Huggins interaction parameter (χ23) was earlier successfully used in the characterization of polymer blends. We propose to express the magnitude of modified filler/polymer interactions by using χ23. It was calculated from retention data of test solutes during an inverse gas chromatography (IGC) experiment. IGC is an extension of conventional gas chromatography in which a nonvolatile material to be investigated is immobilized on a column. Parameters determined during IGC experiments may be successfully used in the characterization of polymers and their blends, composites, fillers, and other materials and the quantification of the interactions between the components of polymer mixtures, including the interactions between polymeric components and filler surfaces. Here this method is applied to the characterization of a series of poly(ether urethane)/modified carbonate–silicate filler systems containing different amounts of a filler (5, 10, and 20 wt %). The possibilities and limitations of the IGC method are shown. The usefulness of some methods for minimizing the Δχ effect (the dependence of χ23 on the type of test solute) is examined and discussed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
This paper presents the results of an experimental investigation on the fire retardancy properties of glass fibre–reinforced polyester (GFRP) composites with bisphenol‐A vinylester and isophthalic polyester as matrices and low electrical conductivity E‐glass fibres as reinforcement. The fire protection systems tested were alumina trihydrate (ATH), decabromodiphenyl ether (DBDE), and antimony trioxide (Sb2O3). A mass loss cone calorimeter was used to obtain the properties of heat release rate (HRR), peak HRR, total heat released, total mass loss, time to ignition, and time of combustion. Moreover, limiting oxygen index (LOI), UL‐94, and glow‐wire tests were also performed. The fire tests were carried out in order to investigate if the combination of ATH and DBDE could have “additive,” “antagonistic,” or “synergistic” effects on the flame retardant properties of the GFRP studied in this work. In addition, the influence of the ATH content variation on flame retardant properties was also evaluated. The results indicate that the sole addition of ATH at 47.7 phr could lead to the complete inhibition of the composites ignition, while the materials containing DBDE exhibit ignition and flame propagation in the cone calorimeter test.  相似文献   

12.
High‐density polyethylene (HDPE)–wood composite samples were prepared using a twin‐screw extruder. Improved filler–filler interaction was achieved by increasing the wood content, whereas improved polymer–filler interaction was obtained by adding the compatibilizer and increasing the melt index of HDPE, respectively. Then, effects of filler–filler and polymer–filler interactions on dynamic rheological and mechanical properties of the composites were investigated. The results demonstrated that enhanced filler–filler interaction induced the agglomeration of wood particles, which increased the storage modulus and complex viscosity of composites and decreased their tensile strength, elongation at break, and notched impact strength because of the stress concentration. Stronger polymer–filler interaction resulted in higher storage modulus and complex viscosity and increased the tensile and impact strengths due to good stress transfer. The main reasons for the results were analyzed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
Glycerol‐plasticized starch films were modified by addition of various layered compounds as fillers, two being of natural origin (kaolinite, a neutral mineral clay, and hectorite, a cationic exchanger mineral clay) and two synthetic (layered double hydroxide, LDH, an anionic exchanger, and brucite, having a neutral structure). The effects of the filler type and the plasticizer were analyzed by X‐ray diffraction, dynamic mechanical analysis and thermogravimetry. The storage modulus was higher for kaolinite > brucite > hectorite than for LDH starch composites. However, only the hectorite filler presented a shift of the interplanar basal distance to higher values, which represents the intercalation of glycerol molecules between the clay layers. The glycerol intercalation is minimized in plasticized–oxidized starch films where the oxidized starch chains are preferentially intercalated. Copyright © 2003 Society of Chemical Industry  相似文献   

14.
Films were prepared by extrusion using acetylated and oxidized banana starches at different concentrations mixed with low‐density polyethylene, and their biodegradation (buried in soil) at different storage times was studied. Morphological, thermal, and mechanical characteristics of the films after degradation were tested. Films made of acetylated banana starch degraded most rapidly and those prepared with oxidized starch had the slowest degradation time. The type of chemically modified starch plays an important role in degradation of film. Burying the films produced a decrease in degradation temperature at the longest storage time, and there was a longer interval in the films prepared with native banana starch, followed by those made of acetylated starch. The buried in soil films had a broad phase transition and, consequently, an increase in enthalpy. This is due to degradation of amorphous starch zones with an increase in the crystallinity. Electron scanning microscopy analysis revealed greater degradation at longer storage time and a more marked effect in the films made of modified banana starch. Mechanical properties of the films were affected by degradation, and these varied depending on the modified banana starch used. The use of biodegradable polymers such as chemically modified banana starch might be feasible for making films with a high rate of degradation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Composite materials based on an aliphatic copolyamide and a secondary polyethylene, as thermoplastic matrices, and wood chips as filler were obtained and characterized. The influence of different factors (polymeric matrix type, fractional composition and geometrical characteristics of wood filler, processing parameters and ratio polymer/wood) on the properties of polymer–wood composites (PWCs) was studied. It was demonstrated that the packing factor F has an essential influence on the properties of PWCs: increasing F values determines an improvement in mechanical properties of these materials. Mechanical properties, thermal behaviour, morphological and diffusion characteristics of the analyzed composites were evaluated through specific methods and reported herein. Morphological and DSC data confirmed the presence of strong interface interactions between polymer and wood. The diffusion characteristics of PWCs showed that the diffusion coefficient D essentially depends on filler content in composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1700–1710, 2006  相似文献   

16.
A novel method has been developed to process highly filled polymer–particle composites to test samples as braze metal preforms. Polypropylene (PP), low‐density polyethylene (LD‐PE) and high‐density polyethylene (HD‐PE) were used as polymer matrices. Two types of nickel‐based braze metal microparticles (Ni 102 and EXP 152) were compounded to the polymer matrices at filler contents up to 65 vol %. With enhancing filler content, torque at kneading rotors, and injection molding parameter were significantly affected by increasing viscosity. Injection molded composites show well‐distributed spherical microparticles and particle–particle interactions. Polymers decompose residue‐free at temperatures above 550°C, even for their composites. Adding particles reduces polymer crystallinity, whereas defined cooling at 5°C/min significantly increases the crystallinity and melt peak temperature of polymers compared to undefined cooling prior injection molding. Storage modulus of polymers increases significantly by adding filler particles. LD‐PE + 65 vol % EXP 152 show the most suitable composite performance. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
Composites of poly(3‐hydroxybutyrate), P(3HB), and starch were prepared by solution casting technique. To improve adhesion of starch to P(3HB), stearic acid was added as a compatibilizer and glycerol as a plasticizer. The water resistance, mechanical, and biodegradable properties of the P(3HB)/starch composites were studied. Diffusion and penetration coefficients of water increased with increasing starch content in the composites. The results showed that the elastic modulus and strain at rupture of the P(3HB)/starch composites were enhanced by increasing starch content upto 10 wt % and the tensile strength increased from 21.2 to 93.9 MPa. The presence of starch content higher than 10 wt % had an adverse effect on the mechanical properties of the investigated composites. The biodegradation rate using Actinomycetes increased proportionally to the starch content in the composite and accelerated in a culture medium of pH ≈ 7.0 at 30°C. Enzymatic degradation experiments showed that lipase produced by Streptomyces albidoflavus didnot degrade P(3HB)/starch composites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
The effect of frequency, temperature, and BaFe12O19 (BF) content on the dielectric constant $ \acute\varepsilon $ , dielectric loss ε″, and tan δ were studied for barium ferrite—natural rubber composites (RFC). The dielectric constant for barium ferrite was related to the preparation method, meanwhile the dielectric constant of natural rubber (NR) is relatively large compared to the theoretical value. The results showed that $ \acute\varepsilon $ , ε″, and tan δ for RFC decrease as the frequency increases, however, at higher frequencies, the effect significantly weakens. At low ferrite loading, the dielectric properties are strongly influenced by BF content. Strong correlation between magnetic initial permeability and dielectric constant for hard magnetic material polymer composites was also observed. Increasing the content of barium ferrite in NR matrix enhances both ε″ and tan δ. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
Novel well‐dispersed nanocomposites of halloysite nanotubes and acrylonitrile–butadiene–styrene were prepared. The fire retardancy and thermal stability of these new nanocomposites were improved. A synergistic effect was observed between the halloysite nanotubes and an intumescent flame‐retardant system consisting of ammonium polyphosphate, melamine polyphosphate and pentaerythritol in the acrylonitrile–butadiene–styrene composites. The incorporation of the intumescent flame‐retardant material into the halloysite–polymer nanocomposite system also improved the thermal stability and reduced the peak heat release rate by up to 56.2%, and it significantly reduced the emission of CO and CO2 gases. The morphology and dispersion of the halloysite nanotubes were characterized using scanning and transmission electron microscopy. The thermal stability and flammability properties were investigated using thermogravimetric analysis and cone calorimeter tests. © 2013 Society of Chemical Industry  相似文献   

20.
Dielectric properties of Al–epoxy composites were characterized as a function of composition, frequency, and temperature. The dielectric constant increased smoothly with an increase in the concentration of aluminum. An increase in dielectric constant was also observed with an increase in temperature as well as with a decrease in frequency. In general, dissipation factor values for composites with higher concentrations of aluminum were greater than those with lower volume content of aluminum. Also, the dissipation factor showed an increase both with a decrease in frequency and an increase in temperature. The increase in values of dielectric constant and dissipation factor with an increase in concentration of aluminum was attributed to interfacial polarization. The absence of any discontinuity in the plot of dielectric constant versus composition was ascribed to the absence of continuous aluminum chains in the composition range investigated. The increase in dielectric constant with a rise in temperature was attributed to the segmental mobility of the polymer molecules. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3602–3608, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号