首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liquid crystalline copolyester‐polyamide 66 (LCPES/PA66) composites compatibilized by liquid crystalline copolyesteramide (LCPEA) were prepared by injection molding. The LCPES employed was a commercial copolyester, Vectra A950, and the LCPES was a semiflexible thermotropic copolyesteramides based on 30 mol% of p‐amino benzoic acid (ABA) and 70 mol% of poly(ethylene terephthalate) (PET). Thermal analysis, mechanical characterization, and morphological investigations were conducted on the blends. The dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) tests showed that LCPEA is an effective compatibilizer for the LCPES/PA66 composites. The mechanical measurements showed that the stiffness, tensile strength and Izod impact strength of the insitu composites are improved by adding LCPEA because of the compatibilization and reinforcement to LCPES/PA66 composites. However, the properties improvement vanished when LCP content reached 10 wt%. The drop weight dart impact test was also applied to analyze the impact fracture characteristics of these composites. The results showed that the maximum impact force (Fmax), crack initiation and propagation energy all improved with the addition of a small percent of LCPEA. From these results, it appeared that LCPEA prolongs the time for crack initiation and propagation. It also increases the energies for crack initiation and propagation, thereby leading to toughening of the LCPES/PA66 insitu composites. Finally, the correlation between the mechanical properties and morphology of the composites is discussed.  相似文献   

2.
Ternary in situ composites based on poly(butylene terephthalate) (PBT), polyamide 66 (PA66), and semixflexible liquid crystalline polymer (LCP) were systematically investigated. The LCP used was an ABA30/PET liquid crystalline copolyesteramide based on 30 mol % of p‐aminobenzoic acid (ABA) and 70 mol % of poly(ethylene terephthalate) (PET). The specimens for thermal and rheological measurements were prepared by batch mixing, while samples for mechanical tests were prepared by injection molding. The results showed that the melting temperatures of the PBT and PA66 phases tend to decrease with increasing LCP addition. They also shifted toward each other due to the compatibilization of the LCP. The torque measurements showed that the ternary blends exhibited an apparent maximum near 2.5–5 wt % LCP. Thereafter, the viscosity of the blends decreased dramatically at higher LCP concentrations. Furthermore, the torque curves versus the PA66 composition showed that the binary PBT/PA66 blends can be classified as negative deviation blends (NDBs). The PBT/PA66/LCP blends containing up to 15 wt % LCP were termed as positive deviation blends (PDBs), while the blends with the LCP ≥25 wt % exhibited an NDB behavior. Finally, the tensile tests showed that the stiffness and tensile strength of ternary in situ composites were generally improved with increasing LCP content. The impact strength of ternary composites initially increased by the LCP addition, then deteriorated when the LCP content was higher than 10 wt %. The correlation between the mechanical properties and morphology of the blends is discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1975–1988, 2000  相似文献   

3.
In this study, randomly oriented in situ composites based on liquid‐crystalline polymers (LCPs) were prepared by thermal compression moulding. The LCP employed was a semi‐flexible liquid‐crystalline copolyesteramide with 30 mol% of p‐aminobenzoic acid (ABA) and 70 mol% of poly(ethylene terephthalate) (PET). The matrices were poly(butylene terephthalate) (PBT) and polyamide 66 (PA66). The rheological properties, compatibility and morphological structures of these in situ composites were investigated. The results showed that PA66‐LCP and PBT–LCP component pairs of the composites are miscible in the molten state, but partially compatible in the solid state. The ratios of viscosity, λ1 = ηLCPPA66 and λ2 = ηLCPPBT, are all greater than 1.0. However, the melt viscosity of the LCP/PBT and LCP/PA66 blend is much lower than that of PBT and PA66, and it decreases markedly with increasing LCP content. When the LCP/PA66 or LCP/PBT blends are compression moulded, the LCP/PA66 or LCP/PBT melts and flows easily due to their low viscosity, and the LCP phases in the melts deform easily along the flow directions, which are random. It leads to uniformly dispersed LCP micro‐fibres randomly orientation in the thermoplastic matrix due to the compatibility between the blending components. © 2003 Society of Chemical Industry  相似文献   

4.
Ternary in situ polycarbonate (PC)/poly(acrylonitrile‐butadiene‐styrene) (ABS)/liquid crystalline polymer(LCP) composites were prepared by injection molding. The LCP used was a versatile Vectra A950, and the matrix of composite specimens was PC/ABS 60/40 by weight. Maleic anhydride (MA) copolymer and solid epoxy resin (bisphenol type‐A) were used as compatibilizers for these composites. The tensile, dynamic mechanical, impact, morphology, and thermal properties of the composites were studied. Tensile tests showed that the tensile strength of the PC/ABS/LCP composite in the longitudinal direction increased markedly with increasing LCP content. However, it decreased slowly with increasing LCP content in the transverse direction. The modulus of this composite in the longitudinal direction appeared to increase considerably with increasing LCP content, whereas the incorporation of LCP into PC/ABS blends had little effect on the modulus in the transverse direction. The impact tests revealed that the Izod impact strength of the composites in both longitudinal and transverse direction decreased with increasing LCP content up to 15 wt %; thereafter it increased slowly with increasing LCP. Dynamic mechanical analyses (DMA) and thermogravimetric measurements showed that the heat resistance and heat stability of the composites tended to increase with increasing LCP content. Scanning electron microscopy observation and DMA measurement indicated that the additions of epoxy and MA copolymer to PC/ABS matrix appeared to enhance the compatibility between the PC and ABS, and between the matrix and LCP. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2274–2282, 1999  相似文献   

5.
Poly(2,6‐dimethyl‐1,4‐phenylene oxide)/polyamide 6 (PPO/PA6 30/70) blends were impact modified by addition of three kinds of maleated polystyrene‐based copolymers, i.e., maleated styrene‐ethylene‐butylene‐styrene copolymer (SEBS‐g‐MA), maleated methyl methacrylate‐butadiene‐styrene copolymer (MBS‐g‐MA), and maleated acrylonitrile‐butadiene‐styrene copolymer (ABS‐g‐MA). The mechanical properties, morphology and rheological behavior of the impact modified PPO/PA6 blends were investigated. The selective location of the maleated copolymers in one phase or at interface accounted for the different toughening effects of the maleated copolymer, which is closely related to their molecular structure and composition. SEBS‐g‐MA was uniformly dispersed in PPO phase and greatly toughened PPO/PA6 blends even at low temperature. MBS‐g‐MA particles were mainly dispersed in the PA6 phase and around the PPO phase, resulting in a significant enhancement of the notched Izod impact strength of PPO/PA6 blends from 45 J/m to 281 J/m at the MBS‐g‐MA content of 20 phr. In comparison, the ABS‐g‐MA was mainly dispersed in PA6 phase without much influencing the original mechanical properties of the PPO/PA6 blend. The different molecule structure and selective location of the maleated copolymers in the blends were reflected by the change of rheological behavior as well. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Polyamide 66–thermal liquid crystalline polymer (PA66/TLCP) composites containing 10 wt% TLCP was compatibilized by ethylene–propylene–diene‐grafted maleic anhydride terpolymer (MAH‐g‐EPDM). The blending was performed on a twin‐screw extrusion, followed by an injection molding. The rheological, dynamic mechanical analysis (DMA), thermal, mechanical properties, as well as the morphology and FTIR spectra, of the blends were investigated and discussed. Rheological, DMA, and FTIR spectra results showed that MAH‐g‐EPDM is an effective compatibilizer for PA66/TLCP blends. The mechanical test indicated that the tensile strength, tensile elongation, and the bending strength of the blends were improved with the increase of the content of MAH‐g‐EPDM, which implied that the blends probably have a great frictional shear force, resulting from strong adhesion at the interface between the matrix and the dispersion phase; while the bending modulus was weakened with the increase of MAH‐g‐EPDM content, which is attributed to the development of the crystalline phase of PA66 hampered by adding MAH‐g‐EPDM. POLYM. COMPOS., 27:608–613, 2006. © 2006 Society of Plastics Engineers  相似文献   

7.
This work aimed at studying the role of poly(phenylene oxide) (PPO) and polystyrene (PS) in toughening polyamide‐6 (PA6)/styrene‐ethylene‐butadiene‐styrene block copolymer grafted with maleic anhydride (SEBS‐g‐MA) blends. The effects of weight ratio and content of PPO/PS on the morphology and mechanical behaviors of PA6/SEBS‐g‐MA/(PPO/PS) blends were studied by scanning electron microscope and mechanical tests. Driving by the interfacial tension and the spreading coefficient, the “core–shell” particles formed by PPO/PS (core) and SEBS‐g‐MA (shell) played the key role in toughening the PA6 blends. As PS improved the distribution of the “core–shell” particles due to its low viscosity, and PPO guaranteed the entanglement density of the PPO/PS phase, the 3/1 weight ratio of PPO/PS supplied the blends optimal mechanical properties. Within certain range, the increased content of PPO/PS could supply more efficient toughening particles and bring better mechanical properties. Thus, by adjusting the weight ratio and content of PPO and PS, the PA6/SEBS‐g‐MA/(PPO/PS) blends with excellent impact strength, high tensile strength, and good heat deflection temperature were obtained. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45281.  相似文献   

8.
In situ compatibilized melt blends of polyamide 6 (PA‐6) with polyester elastomer (PEL) were prepared in a corotating twin‐screw extruder using two types of coupling agent (CA): diglycidyl ether of bisphenol A (DGEBA) and 1,4‐phenylene bis(2‐oxazoline) (PBO). The notched impact strength of PA‐6 and PA‐6/PEL blends increased with the addition of coupling agent, especially DGEBA, and the maximum impact toughening of the blend was obtained with 0.6 mol % DGEBA, the composition of minimum domain size observed from SEM. Viscosities of the untreated blends increased over those of the base resins at low frequencies. Viscosities of both the base resins and the blends increased with the addition of CA, and the effect was much more pronounced with DGEBA, especially for PA‐6 and PA‐6–rich blends. The crystallization temperature (Tc) of PEL increased over 10°C, whereas the Tc of PA‐6 decreased by 2–3°C in the blends. With the addition of coupling agents, the crystallization melting temperature (Tm) and Tc of PA‐6 decreased by up to 5°C with DGEBA, implying that the crystallization of PA‐6 is disturbed by the in situ formed PA‐6–CA–PEL or PA‐6–CA–PA‐6 type copolymer. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3966–3973, 2004  相似文献   

9.
Blends of polyamide-6 (PA6) and thermotropic liquid crystalline polymer (LCP) compatibilized with various maleic-anhydride-grafted polypropylene (MAP) contents were injection-moulded. The effect of compatibilization on the mechanical properties of the blends was investigated by means of tensile testing, drop weight Charpy impact measurement and dynamic mechanical analysis. The static tensile measurement showed that the strain-at-break depends strongly on the MAP content. The impact test also indicated that the critical strain energy release rate (GIC) is dependent on the MAP concentration. These results revealed that the 80%PA6/MAP(86/14)–20%LCP blend exhibits the highest strain-at-break and GIC values. Moreover, the tensile ductility and impact toughness tended to decrease dramatically with increasing MAP content. This was attributed to the chemical and thermal decomposition of PA6 during blending for the LCP/PA6 blends containing higher MAP concentration. © of SCI.  相似文献   

10.
A novel method is used for preparing liquid rubber‐toughened epoxy blend, in which an initiator was added to the liquid rubber–epoxy mixture to initiate crosslinking reaction of liquid rubber, and then curing agent was added to form the thermoset. Two epoxy blends with carboxyl‐terminated butadiene‐acrylonitrile copolymers were prepared using traditional and novel methods respectively. Results indicated that the novel rubber‐toughened epoxy blend exhibited much better mechanical properties than its traditional counterpart. The morphologies of the blends were explored by transmission electron microscopy (TEM), it was revealed that the use of the novel method formed a local interpenetrating network structure in the blend, which substantially improved the interfacial adhesion. The impact fracture surfaces of the two blends were observed by scanning electron microscopy (SEM) to explore the toughening mechanism, it was found that crack pinning was the major toughening mechanism for the novel rubber‐toughened epoxy blend. Dynamic mechanical analysis (DMA) was applied to determine the Tg values of the blends, which were found to be close. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41110.  相似文献   

11.
Compatibilized blends of polyamide-6 (PA6) and thermotropic liquid crystalline polymer (LCP) modified with various high-impact polypropylene (HIPP) contents were injection-molded. These blends were compatibilized with maleic anhydride-grafted polypropylene (MAP). The effects of impact modification on the morphology, impact, static, and dynamic mechanical properties were investigated. The results showed that the HIPP addition leads to an improvement of the Izod impact strength of the blends significantly while it reduced the tensile strength and stiffness properties. An attempt was made to correlate the structure of the PA6(MAP)/HIPP/LCP blends from the scanning electron microscopic observations with the measured mechanical properties. This work provides a way to produce a tough in situ composite. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1611–1619, 1998  相似文献   

12.
Maleic anhydride compatibilized blends of isotactic polypropylene (PP) and thermotropic liquid crystaline polymer (LCP) were prepared either by the direct injection molding (one-step process), or by twin-screw extrusion blending, after which specimens were injection molded (two-step process). The morphology and mechanical properties of these injection molded in situ LCP composites were studied by means of scanning electron microscopy (SEM), Izod impact testing, static tensile, and dynamic mechanical measurements. SEM observations showed that fine and elongated LCP fibrils are formed in the maleic anhydride compatibilized in situ composites fabricated by means of the one-step process. The tensile strength and modulus of these composites were considerably close to those predicted from the rule of mixtures. Furthermore, the impact behavior of LCP fibril reinforced composites was similar to that of the glass fiber reinforced polymer composites. On the other hand, the maleic anhydride compatibilized blends prepared from the two-step process showed lower mechanical performance, which was attributed to the poorer processing behavior leading to the degradation of PP. The effects of the processing steps, temperatures, and compatibilizer addition on the mechanical properties of the PP/LCP blends are discussed.  相似文献   

13.
In this article, blends of polypropylene random copolymer (PP‐R) with a novel impact modifier, namely ethylene/styrene interpolymer (ESI), were prepared to evaluate the effectiveness of ESI in toughening PP‐R and the influence of ESI content on the mechanical, thermal, and rheological properties of polymer blends. Results showed that super‐toughened PP‐R/ESI blends (ca. Izod impact strength ≥ 500 J/m) were readily achieved with only 5 wt % ESI. The blends exhibited significant improvement in both impact strength and elongation, while small loss in tensile strength and elastic modulus when increasing ESI content. ESI had a nucleating effect that caused PP matrix to crystallize at higher temperatures, whereas PP‐R/ESI blends presented lower melting temperatures (Tm) than PP‐R matrix and Tm decreased with the increment of ESI content. Rheology study indicated that both PP‐R matrix and PP‐R/ESI blends presented shear thinning behaviors during melt processing. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
The ternary blends of polyamide 6/maleated ethylene‐propylene‐diene rubber/epoxy (PA6/EPDM‐g‐MA/EP) were prepared by a twin‐screw extruder with four different blending sequences. With the variation of blending sequence, the ternary blends presented distinct morphology and mechanical properties because of different interactions induced by various reactive orders. The addition of epoxy could increase the viscosity of the PA6 matrix, but a considerably larger size of the dispersed rubber phase was observed while first preblending PA6 with epoxy followed by blending a premix of PA6/EP with EDPM‐g‐MA, which was attested by rheological behaviors and SEM observations. It was probably ascribed to the fact that the great increase of the interfacial tension between the matrix and rubber phase aroused a great coalescence of rubber particles. The presence of epoxy in the rubber phase reduced the rubber's ability to cavitate so that the toughening efficiency of the EPDM‐g‐MA was decreased. The results of mechanical testing revealed that the optimum blending sequence to achieve balanced mechanical properties is blending PA6, EPDM‐g‐MA, and epoxy simultaneously in which the detrimental reactions might be effectively suppressed. In addition, thermal properties were investigated by TG and DSC, and the results showed that there was no distinct difference. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Low‐density polyethylene/polyamide 6 (LDPE/PA6) blends were in situ formed by reactive extrusion, in which in situ polymerization of ε‐caprolactam (CL) and in situ copolymerization of maleic anhydride grafted low‐density polyethylene (LDPE‐MA) and CL took place simultaneously. The latter reaction could be considered as in situ compatibilization, and the influence of in situ compatibilization on the morphologies, thermal properties, and rheological behaviors of the blends was investigated in this work. Scanning electron microscopy showed that the in situ compatibilization could dramatically reduce the dispersed phase sizes and narrow the size distribution. The thermal properties indicated that in differential scanning calorimetry (DSC) cooling scans, fractionated crystallization of the PA6 component was observed in all cases and was promoted with increasing the amount of LDPE‐MA. The DSC second heating scans showed the in situ compatibilization could stimulate the formation of the less stable γ‐crystalline form of PA6 in the blends. Dynamic rheological experiments revealed the in situ compatibilization had enhanced the viscosity, storage modulus, and loss modulus of the blend and reduce the corresponding slope values of the storage modulus and loss modulus. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
The epoxy/polystyrene system is characterized by a poor adhesion between the constituent phases, which determines its mechanical properties. The adhesion can be improved via blends based on epoxy resin and random copolymers, poly(styrene‐co‐allylalcohol) (PS‐co‐PA). In this work, the influence of PS‐co‐PA content and the good adhesion between the phases on the tensile properties and the fracture toughness achieved through instrumented Charpy tests have been investigated. The tensile strength and the deformation at break showed an increase in the PS‐co‐PA content while the Young's modulus remained the same. The tensile fracture surfaces revealed that the improvement of these magnitudes was mainly due to a crack deflection mechanism. Also, the fracture toughness of the blends was superior to that of the pure epoxy resin. The main operating toughening mechanism was crack deflection. The fractographic analysis showed that ~ 80% of the particles were broken, and the crack tended to divert from its original path through the broken PS‐co‐PA particles. The remaining particles were detached from the epoxy resin, and the holes left suffered plastic deformation. Analytical models were used to predict successfully the toughness due to these mechanisms. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

17.
Environmentally friendly bio‐filled composites of various proportions of polyamide 6 (PA6) and technical lignin have been prepared using a twin‐screw extruder. Transmission electron microscopy has been used to investigate the morphology of the composites. It reveals homogeneous single phase system, indicating the miscibility of PA6 and lignin. The glass transition temperature of the blends, determined by DMA, was shifted systematically to higher temperature with increasing concentration of lignin which highlights the miscibility of both components. In addition, Fourier Transform Infrared analyses have shown that new specific hydrogen‐bonding interactions are formed between hydroxyl groups of lignin and amine groups of the PA6. The presence of these intermolecular interactions between PA6 and lignin strongly influenced the thermal stability of the blends by lowering the onset of the blend's degradation process. However, the blends exhibit good mechanical properties whatever the lignin content. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42963.  相似文献   

18.
The in situ composites based on poly(ethylene 2,6‐naphthalate) (PEN) and liquid crystalline polymer (LCP) were investigated in terms of thermal, rheological, and mechanical properties, and morphology. Inclusion of LCP enhanced the crystallization rate and tensile modulus of the PEN matrix, although it decreased the tensile strength in the PEN‐rich phase. The orientation effect of this blend system was composition and spin draw ratio dependent, which was examined by Instron tensile test. Further, the addition of dibutyltindilaurate (DBTDL) as a reaction catalyst was found to increase the viscosity of the blends, enhance its adhesion between the dispersed LCP phases and matrix, and led to an increase of mechanical properties of two immiscible blends. Hence DBTDL is helpful in producing a reactive compatibilizer by reactive extrusion at the interface of this LCP reinforced polyester blend system. The optimum catalyst amount turned out to be about 500 ppm, when the reaction proceeded in the 75/25 PEN/LCP blend system. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2448–2456, 1999  相似文献   

19.
Ternary in‐situ poly(butylene terephthalate) (PBT)/poly(acrylonitrile‐butadienestyrene) (ABS)/liquid crystalline polymer(LCP) blends were prepared by injection molding. The LCP used was a versatile Vectra A950, and the matrix material was PBT/ABS 60/40 by weight. Maleic anhydride (MA) copolymer and solid epoxy resin (bisphenol type‐A) were used as compatibilizers for these blends. The tensile, dynamic mechanical, impact, morphology and thermal properties of the blends were studied. Tensile tests showed that the tensile stregth of PBT/ABS/LCP blend in the longitudinal direction increased markedly with increasing LCP content. However, it decreased sharply with increasing LCP content up to 5 wt%; thereafter it decreased slowly with increasing LCP content in the transverse direction. The modulus of this blend in the longitudinal direction appeared to increase considerably with increasing LCP content, whereas the incorporation of LCP into PBT/ABS blends had little effect on the modulus in the transverse direction. The impact tests revealed that the Izod impact strength of the blends in longitudinal direction decreased with increasing LCP content up to 10 wt%; thereafter it increased slowly with increasing LCP. Dynamic mechanical analyses (DMA) and thermogravimetric measurements showed that the heat resistance and heat stability of the blends tended to increase with increasing LCP content. SEM observation, DMA, and tensile measurement indicated that the additions of epoxy and MA copolymer to PBT/ABS matrix appeared to enhance the compatibility between PBT/ABS and LCP.  相似文献   

20.
This paper reports about the polymerization of ε‐caprolactam monomer in the presence of low molecular weight hydroxyl or isocyanate end‐capped ethylene‐butylene elastomer (EB) elastomers as a new concept for the development of a submicron phase morphology in polyamide 6 (PA6)/EB blends. The phase morphology, viscoelastic behavior, and impact strength of the polymerization‐designed blends are compared to those of similar blends prepared via melt‐extrusion of PA6 homopolymer and EB elastomer. Polyamide 6 and EB elastomer were compatibilized using a premade triblock copolymer PA6‐b‐EB‐b‐PA6 or a pure EB‐b‐PA6 diblock reactively generated during melt‐blending (extrusion‐prepared blends) or built‐up via anionic polymerization of ε‐caprolactam on initiating ? NCO groups attached to EB chain ends (polymerization‐prepared blends). Two compatibilization approaches were considered for the polymerization‐prepared blends: (i) the addition of a premade PA6‐b‐EB‐b‐PA6 triblock copolymer to the ε‐caprolactam monomer containing nonreactive EB? OH elastomer and (ii) generation in situ of a PA6‐b‐EB diblock using EB? NCO precursor on which polyamide 6 blocks are built‐up via anionic polymerization of ε‐caprolactam. The noncompatibilized blends exhibit a coarse phase morphology, either in the extruded or the polymerization prepared blends. Addition of premade triblock copolymer (PA6‐b‐EB‐b‐PA6) to a EB? OH /ε‐caprolactam dispersion led to a fine EB phase (0.14 μm) in the PA6 matrix after ε‐caprolactam polymerization. The average particle size of the in situ reactively compatibilized polymerization‐prepared blend is about 1 μm. The notched Izod impact strength of the blend compatibilized with premade triblock copolymer was much higher than that of the neat PA6, the noncompatibilized, and the in situ reactively compatibilized polymerization blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2538–2544, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号