首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
吸收器是吸收式制冷系统的重要部件.溴化锂溶液的降膜吸收是吸收器中最常见的传质传热形式之一.通过对溴化锂溶液在降膜吸收过程中传质和传热特性的分析,使用基于有限元法的COMSOL Multiphysics软件,建立了溴化锂溶液和水蒸汽降膜吸收的物理数学模型,计算了液膜内部温度和质量分数的分布、界面处传质通量、界面处传热通量...  相似文献   

2.
An experimental set-up is built incorporating only two principle components, viz, absorber and generator of vapor absorption refrigeration system (VARS) to investigate heat and mass transfer characteristics of absorber. The refrigerant, R134a (1,1,1,2-tetrafluroethane) is absorbed by R134a-DMAC (N,N-dimethylacetamide) solution flowing over the horizontal tubes arranged as tube bank. The effect of solution flow rate, coolant flow rate and temperature, heater load and concentration of R134a is studied. The performance parameters like solution exit temperature from tubes, state point temperatures, heat flux, mass flux, and overall heat and mass transfer coefficients are presented for different operating condition of absorber. For lower flow rate of the solution and higher flow rate of the coolant, the bulk solution temperature is found to decrease. The heat and mass transfer coefficients increase with mass flow rate of the solution. An increase in inlet temperature of coolant results into an increase in overall heat transfer coefficient and decrease in overall mass transfer coefficient.  相似文献   

3.
This work studies the coupled heat and mass transfer by natural convection near a vertical wavy surface in a non-Newtonian fluid saturated porous medium with thermal and mass stratification. The surface of the vertical wavy plate is kept at constant wall temperature and concentration. A coordinate transformation is employed to transform the complex wavy surface to a smooth surface, and the obtained boundary layer equations are then solved by the cubic spline collocation method. Effects of thermal and concentration stratification parameters, Lewis number, buoyancy ratio, power-law index, and wavy geometry on the important heat and mass transfer characteristics are studied. Results show that an increase in the thermal and concentration stratification parameter decreases the buoyancy force and retards the flow, thus decreasing the heat and mass transfer rates between the fluid and the vertical wavy surface. It is shown that an increase in the power-law index, the thermal stratification parameter, or the concentration stratification parameter leads to a smaller fluctuation of the local Nusselt and Sherwood numbers with the streamwise coordinate. Moreover, the total heat transfer rate and the total mass transfer rate of vertical wavy surfaces are higher than those of the corresponding smooth surfaces.  相似文献   

4.
This research focuses on studying the effects of heat and mass transfer convective flow passing through an infinite vertical plate embedded in porous media under radiation and chemical reaction with constant heat and mass flux. A magnetic field of strength is functional throughout the fluid region. The novelty of the present work is to examine the heat and mass transfer magnetohydrodynamics flow in the presence of thermal radiation. The equations governing the flow, heat and mass transfer are solved analytically using the perturbation technique. Expressions for velocity, temperature, concentration, skin-friction, Nusselt, and Sherwood numbers are obtained. The influence of physical parameters on the flow domain is described graphically and in tabular form. It is found that increase in radiation parameter reduces the velocity and temperature. Moreover, internal friction of the plate decreased with increasing values of radiation parameter.  相似文献   

5.
This work examines the natural convection heat and mass transfer near a sphere with constant wall temperature and concentration in a micropolar fluid. A coordinate transformation is used to transform the governing equations into nondimensional nonsimilar boundary layer equations and the obtained boundary layer equations are then solved by the cubic spline collocation method. Results for the local Nusselt number and the local Sherwood number are presented as functions of the vortex viscosity parameter, Schmidt number, buoyancy ratio, and Prandtl number. For micropolar fluids, higher viscosity tends to retard the flow and thus decreases the natural convection heat and mass transfer rates from the sphere with constant wall temperature and concentration. Moreover, the natural convection heat and mass transfer rates from a sphere in Newtonian fluids are higher than those in micropolar fluids.  相似文献   

6.
The problem of conjugate natural convection about a vertical cylindrical fin with uniform lateral mass flux in a fluid-saturated porous medium has been studied numerically. Solutions based on the third level of truncation are obtained by the local nonsimilarity method. The effects of the surface mass flux, the conjugate convection-conduction parameter, and the surface curvature on fin temperature distribution, local heat transfer coefficient, local heat flux, average heat transfer coefficient, and total heat transfer rate are presented. A comparison with finite-difference solutions for the case of constant wall temperature was made, and found in a good agreement.  相似文献   

7.
Current study expounds an unsteady magnetohydrodynamic natural convective flow along a vertical wall in presence of variable transverse magnetic field. Small amplitude undulation in wall heat flux and wall mass flux are imposed at the vertical wall to generate the boundary layer flow. The flow governing equations are divided into sets of steady and unsteady equations and then transformed into the similarity and nonsimilarity equations, respectively, by introducing stream function formulations. The sets of nonsimilarity equations are solved numerically by using three different techniques, namely, perturbation solution technique, asymptotic solution technique and implicit finite difference technique applied, respectively, for lower, higher, and all frequencies (ξ). Results are illustrated in connection with the amplitude and phase angles of shear stress, wall temperature, and concentration against the frequency (ξ) for wide ranges of physically significant parameters. Likening of the results obtained by above mentioned numerical methods are presented in every figure and table. Results reveal that the amplitude of undulating shear stress and wall temperature dwindle and the amplitude of wall concentration increases due to increment in Prandtl number (Pr). Besides, on incrementing Schmidt number (Sc) the amplitude of undulating shear stress and wall concentration dwindle and the amplitude of wall temperature increases. Results also reveal that on incrementing magnetic parameter (M) the amplitude of transient shear stress dwindles while the amplitude of transient wall temperature and concentration increase.  相似文献   

8.
This work studies the Soret and Dufour effects on the boundary layer flow due to natural convection heat and mass transfer over a vertical cone in a fluid-saturated porous medium with constant wall heat and mass fluxes. A similarity analysis is performed, and the obtained similar equations are solved by the cubic spline collocation method. The effects of the Dufour parameter, Soret parameter, Lewis number, and buoyancy ratio on the heat and mass transfer characteristics have been studied. The local surface temperature tends to increase as the Dufour parameter is increased. The effect of the Dufour parameter on the local surface temperature becomes more significant as the Lewis number is increased. Moreover, an increase in the Soret parameter leads to an increase in the local surface concentration and a decrease in the local surface temperature.  相似文献   

9.
The combined free convection boundary layer flow with thermal radiation and mass transfer past a permeable vertical plate is studied when the plate moves in its own plane. The plate is maintained at a uniform temperature with uniform species concentration and the fluid is considered to be gray, absorbing–emitting. The coupled unsteady non-linear momentum, energy and concentration equations governing the problem is obtained and made similar by introducing a time-dependent length scale. The similarity equations are solved numerically using superposition method. The resulting velocity, temperature and concentration distributions are shown graphically for different values of parameters entering into the problem. The numerical values of the local wall shear stress, local surface heat and mass flux are shown in tabular form.  相似文献   

10.
Deterioration in heat transfer of endothermal hydrocarbon fuel   总被引:5,自引:0,他引:5  
Numerical studies under supercritical pressure are carried out to study the heat transfer characteristics in a single-root coolant channel of the active regenerative cooling system of the scramjet engine, using actual physical properties of pentane. The relationships between wall temperature and inlet temperature, mass flow rate, wall heat flux, inlet pressure, as well as center stream temperature are obtained. The results suggest that the heat transfer deterioration occurs when the fuel temperature approaches the pseudo-critical temperature, and the wall temperature increases rapidly and heat transfer coefficient decreases sharply. The decrease of wall heat flux, as well as the increase of mass flow rate and inlet pressure makes the starting point of the heat transfer deterioration and the peak point of the wall temperature move backward. The wall temperature increment induced by heat transfer deterioration decreases, which could reduce the severity of the heat transfer deterioration. The relational expression of the heat transfer deterioration critical heat flux derives from the relationship of the mass flow rate and the inlet pressure.  相似文献   

11.
New correlations of the two-phase multiplier and heat transfer coefficient of R134a during evaporation in a multiport minichannel at low mass flux are proposed. The experimental results were obtained from a test using a counter-flow tube-in-tube heat exchanger with refrigerant flowing in the inner tube and hot water in the gap between the outer and inner tubes. Test section is composed of the extruded multiport aluminium inner tube with an internal hydraulic diameter of 1.2 mm and an acrylic outer tube with an internal hydraulic diameter of 25.4 mm. The experiments were performed at heat fluxes between 10 and 35 kW/m2, and a refrigerant mass flux between 45 and 155 kg/(m2 s). Some physical parameters that influenced the frictional pressure drop and heat transfer coefficient are examined and discussed in detail. The pressure drop and heat transfer coefficient results are also compared with existing correlations. Finally, new correlations for predicting the frictional pressure drop and heat transfer coefficient at low mass fluxes are proposed.  相似文献   

12.
An experiment for heat transfer of water flowing in a vertical rifled tube was conducted at subcritical and supercritical pressure. The main purpose is to explore the heat transfer characteristics of the new-type rifled tube at low mass flux. Operating conditions included pressures of 12–30 MPa, mass flux of 232–1200 kg/(m2 s), and wall heat fluxes of 133–719 kW/m2. The heat transfer performance and wall temperature distribution at various operating conditions were captured in the experiment. In the present paper, the heat transfer mechanism of the rifled tube was analyzed, the effects of pressure, wall heat flux and mass flux on heat transfer were discussed, and corresponding empirical correlations were also presented. The experimental results exhibit that the rifled tube has an obvious enhancement in heat transfer, even at low mass flux. In comparison with a smooth tube, the rifled tube efficiently prevents Departure from Nucleate Boiling (DNB) and delays dryout at subcritical pressure, and also improves the heat transfer of supercritical water remarkably, especially near pseudo-critical point. An increase in pressure or wall heat flux impairs the heat transfer at both subcritical and supercritical pressure, whereas the increasing mass flux has a contrary effect.  相似文献   

13.
The mass transfer problem of longitudinal laminar flow of the Happel’s free surface model (HFSM) is studied under constant wall flux and constant wall concentration boundary conditions. For different shell void fractions, the analytical solution of Sherwood’s number in fully developed region, the strict Graetz analytical solution of Sherwood’s number in the developing region and approximate Leveque solution are obtained. Furthermore, the expression of local Sherwood’s number for solving the whole range of shell void fraction is obtained by combining Leveque solution with analytical solution in fully developed region. The obtained equation is as accurate as Graetz analytical solution. In the HFSM, the mass transfer coefficient decreases with the increase of shell void fraction. The shell void fraction also affects the entrance region length of mass transfer. If Reynolds’s number, Schmidt’s number and radius of fiber are constant, the entrance region length will increase with the increase of shell void fraction.  相似文献   

14.
A simulation of mixed convection heat and mass transfer in a right triangular enclosure is investigated numerically. The bottom surface of the enclosure is maintained at uniform temperature and concentration that are higher than that of the inclined surface. Moreover, the left wall of cavity moves upward (case 1) and downward (case 2) directions, which have constant flow speed, and is kept adiabatic. The enclosure represents the most common technology utilizing solar energy for desalination or waste-water treatment. A simple transformation is employed to transfer the governing equations into a dimensionless form. A finite-element scheme is used for present analysis. Comparison with the previously published work is made and found to be an excellent agreement. The study is performed for pertinent parameters such as buoyancy ratio, Richardson number and the direction of the sliding wall motion. The effect of aforesaid parameters on the flow and temperature fields as well as the heat and mass transfer rate examined. The results show that the increase of buoyancy ratio enhances the heat and mass transfer rate for all values of Richardson number and for each direction of the sliding wall motion. However, the direction of the sliding wall motion can be a good control parameter for the flow and temperature fields.  相似文献   

15.
Non-symmetric heat flux distributions in terms of gravity in solar collector tubes influence buoyancy-driven secondary flow which has an impact on the associated heat transfer and pressure drop performance. In this study the influence of the asymmetry angle (0°, 20°, 30° and 40°) with regard to gravity for non-uniform heat flux boundaries in a horizontal circular tube was investigated numerically. A stainless steel tube with an inner diameter of 62.68 mm, a wall thickness of 5.16 mm, and a length of 10 m was considered for water inlet temperatures ranging from 290 K to 360 K and inlet Reynolds numbers ranging from 130 to 2000. Conjugate heat transfer was modelled for different sinusoidal type outer surface heat flux distributions with a base-level incident heat flux intensity of 7.1 kW/m2. It was found that average internal heat transfer coefficients increased with the circumferential span of the heat flux distribution. Average internal and axial local heat transfer coefficients and overall friction factors were at their highest for symmetrical heat flux cases (gravity at 0º) and lower for asymmetric cases. The internal heat transfer coefficients also increased with the inlet fluid temperature and decreased with an increase in the external heat loss transfer coefficient. Friction factors decreased with an increase in fluid inlet temperature or an increase in the external heat loss transfer coefficients of the tube model.  相似文献   

16.
This paper studies the effect of first order chemical reaction and thermal radiation on hydromagnetic free convection heat and mass transfer flow of a micropolar fluid via a porous medium bounded by a semi-infinite porous plate with constant heat source in a rotating frame of reference. The plate is assumed to oscillate in time with constant frequency so that the solutions of the boundary layer are the same oscillatory type. The dimensionless governing equations for this investigation are solved analytically using small perturbation approximation. The effect of the various dimensionless parameters entering into the problem on the velocity, temperature and concentration profiles across the boundary layer are investigated through graphs. Also the results of the skin friction coefficient, couple stress coefficient, the rate of heat and mass transfer at the wall are prepared with various values of the parameters.  相似文献   

17.
This work studies the Soret and Dufour effects on the boundary layer flow due to natural convection heat and mass transfer over a downward-pointing vertical cone in a porous medium saturated with Newtonian fluids with constant wall temperature and concentration. A similarity analysis is performed, and the obtained similar equations are solved by cubic spline collocation method. The effects of the Dufour parameter, Soret parameter, Lewis number, and buoyancy ratio on the heat and mass transfer characteristics have been studied. The local Nusselt number tends to decrease as the Dufour parameter is increased. The effect of the Dufour parameter on the local Nusselt number becomes more significant as the Lewis number is increased. Moreover, an increase in the Soret number leads to a decrease in the local Sherwood number and an increase in the local Nusselt number.  相似文献   

18.
In this paper the theoretical model is built for ZEpHyR (ZARM Experimental Hybrid Rocket) main engine which is being developed at ZARM institute, Bremen, Germany. The theoretical model is used to estimate the temperature of exhaust gas. The Conjugate Gradient Method (CGM) with Adjoint Problem for Function Estimation iterative technique is used to solve the Inverse Heat Conduction Problem (IHCP) to estimate the heat flux and internal wall temperature at the throat section of the nozzle. Bartz equation is used to calculate the convective heat transfer coefficient. The exhaust gas temperature is determined using the estimated heat flux, the wall temperature at internal surface of nozzle and the heat transfer coefficient. The accuracy of CGM iterative scheme to solve the IHCP is also investigated and its results are presented.  相似文献   

19.
Natural convection heat and mass transfer along a vertical plate embedded in a doubly stratified micropolar fluid saturated non-Darcy porous medium is presented. The governing nonlinear equations are solved numerically using the Keller-box method. The effects of physical parameters on velocity, microrotation, temperature, concentration, local skin friction and wall couple stress coefficient, heat and mass transfer coefficients are illustrated graphically and in tabular form. The results of convection in a micropolar fluid along a vertical plate are obtained as a special case from the present analysis and are found to be in good agreement with the previously published results.  相似文献   

20.
An experiment was carried out to investigate the characteristics of the evaporation heat transfer and pressure drop for refrigerant R-134a flowing in a horizontal small circular pipe having an inside diameter of 2.0 mm. The data are useful in designing more compact and effective evaporators for various refrigeration and air conditioning systems. The effects of the imposed wall heat flux, mass flux, vapor quality and saturation temperature of R-134a on the measured evaporation heat transfer and pressure drop were examined in detail. When compared with the data for larger pipes (Di ≥ 8.0 mm) reported in the literature, the evaporation heat transfer coefficient for the small pipe considered here is about 30–80% higher for most situations. Moreover, we noted that in the small pipe the evaporation heat transfer coefficient is higher at a higher imposed wall heat flux except in the high vapor quality region, at a higher saturation temperature, and at a higher mass flux when the imposed heat flux is low. In addition, the measured pressure drop is higher for increases in the mass flux and imposed wall heat flux. Based on the present data, empirical correlations were proposed for the evaporation heat transfer coefficients and friction factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号