首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The copolymers of 4‐vinylpyridine (4VP), styrene (St) and divinylbenzene (DVB) with varied compositions, P(4VP‐St‐DVB), were synthesized by suspension polymerization using 2,2′‐azobisisobutyronitrile (AIBN) as an initiator. The insoluble (crosslinked) pyridinium‐type polymers in benzyl–pyridinium bromide form, which possess various macromolecular chain compositions, were prepared by the reaction of each P(4VP‐St‐DVB) with benzyl bromide (BzBr), respectively. By using different halohydrocarbon RX in the quaternization of P(4VP‐St‐DVB), the insoluble pyridinium‐type polymers with various pyridinium group structures were obtained. The structures of P(4VP‐St‐DVB) and its quaternized product Q‐P(4VP‐St‐DVB) were identified by FTIR. The 4VP content in each copolymer P(4VP‐St‐DVB) was measured by nonaqueous titration; and the pyridinium group content (Cq) in each Q‐P(4VP‐St‐DVB) sample was determined by means of the back titration manner in argentometry and/or the elemental analysis method, respectively. In addition, the particle structure and the surface morphology of the thus‐prepared polymer were observed using SEM. According to a series of experimental results, the preparation and characterization of insoluble pyridinium‐type polymers are analyzed and discussed. This work can prepare the ground for a study on the antibacterial activity of insoluble pyridinium‐type polymers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 668–675, 2000  相似文献   

2.
Removal of E. coli from water by modified polypropylene (PP) nonwoven cloths which were prepared through radiation‐induced grafting of 4‐vinyl pyridine (4‐VP) onto PP nonwoven cloths and followed by quaterization was carried out by filtration. The results showed that the content and structure of the pyridinium group on PP nonwoven cloths were important factors to affect their antibacterial activity. The antibacterial activity increased with the number of piled sheets of the used nonwoven cloths and decreased with increase of the viable bacterial cell concentrations in the influent and with filtration rates. The activity detection results found that modified PP nonwoven cloths possessed the ability to capture the bacterial cell alive, and no morphological changes of adhered bacterial cells were observed using SEM; thus, the surfaces of the modified PP nonwoven cloths may not be bactericidal, but bacteriostatic. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1869–1876, 2000  相似文献   

3.
The antibacterial activity of a series of soluble pyridinium-type polymers with different compositions against Escherichia coli (E. coli) suspended in sterilized distilled water was investigated by a colony count method. The results show that the antibacterial activity of the soluble pyridinium-type polymers is characterized by their activity to kill bacterial cells and this activity can be enhanced as the content of the pyridinium group (Cq) in the polymers increases. The species of the bacteria has a great influence upon the antibacterial activity of the soluble pyridinium-type polymers. The polymers possess a strong ability to kill Gram-positive and Gram-negative bacteria, and yeasts, excepting Bacillus subtilis, having gemmae and fungi. The toxicity of this kind of polymer has also been appraised. In the acute stimulation and allergy experiments, the red maculae, edema, and abnormal phenomena of an allergy on the skin of the tested animals were not observed. The acute toxicity experiment shows that the LD50 of the polymer is 2330 mg/kg, implying that this kind of polymer has only very weak toxicity. This is significant for the application of soluble pyridinium-type polymers. © 1998 John Wiley & Sons, Inc. J Appl Polm Sci 67:1761–1768, 1998  相似文献   

4.
Each year, thousands of patients die from antimicrobial‐resistant bacterial infections that fail to respond to conventional antibiotic treatment. Antimicrobial polymers are a promising new method of combating antibiotic‐resistant bacterial infections. We have previously reported the synthesis of a series of narrow‐spectrum peptidomimetic antimicrobial polyurethanes that are effective against Gram‐negative bacteria, such as Escherichia coli; however, these polymers are not effective against Gram‐positive bacteria, such as Staphylococcus aureus. With the aim of understanding the correlation between chemical structure and antibacterial activity, we have subsequently developed three structural variants of these antimicrobial polyurethanes using post‐polymerization modification with decanoic acid and oleic acid. Our results show that such modifications converted the narrow‐spectrum antibacterial activity of these polymers into broad‐spectrum activity against Gram‐positive species such as S. aureus, however, also increasing their toxicity to mammalian cells. Mechanistic studies of bacterial membrane disruption illustrate the differences in antibacterial action between the various polymers. The results demonstrate the challenge of balancing antimicrobial activity and mammalian cell compatibility in the design of antimicrobial polymer compositions. © 2019 Society of Chemical Industry  相似文献   

5.
Solid‐state nuclear magnetic resonance (NMR) techniques were used to characterize cyclomaltoheptaose (β‐cyclodextrin, β‐CD) polymers. These insoluble materials have been investigated by cross‐polarization magic angle spinning with dipolar decoupling (CP/MAS), magic angle spinning without dipolar decoupling (MAS), and high‐resolution magic angle spinning with gradients (HRMAS). These NMR spectra allow the assignment of the principal 1H and 13C signals. The presence of two distinct components (cross‐linked β‐CD and polymerized epichlorohydrin) in the materials was clearly demonstrated. These polymers were used as sorbents and the resulting NMR spectra are presented and discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1288–1295, 2000  相似文献   

6.
Reactions of N‐(2,4‐dinitrophenyl)pyridinium chloride (salt(Cl)) with H+MCl4?1 (M ≡ Fe and Bi) resulted in an anion exchange between Cl? and MCl4? to yield Zincke salts with metal chloride anions, namely salt(Fe) and salt(Bi), respectively. Reactions of the Zincke salts with piperazine resulted in ring‐opening of the pyridinium ring, yielding ionic polymers with 5‐piperazinium‐2,4‐dienylideneammonium metal chloride units, namely polymer(Fe) and polymer(Bi). The corresponding model compounds were synthesized via reactions using salt(Bi) or salt(Cl) as starting materials. The UV–visible spectra of the polymers had absorption maxima at longer wavelengths than those of the model compounds. This indicated that the π‐conjugation system is expanded along the polymer main chain. Superconducting quantum interference device measurements indicated that polymer(Fe) was paramagnetic. Cyclic voltammetry analysis suggested that the polymers underwent electrochemical oxidation. © 2019 Society of Chemical Industry  相似文献   

7.
A new monomer, 3,6‐endo‐methylene‐1,2,3,6‐tetrahydrophthalimidobutanoyl‐5‐fluorouracil (ETBFU), was synthesized by reaction of 3,6‐endo‐methylene‐1,2,3,6‐tetrahydrophthalimidobutanoyl chloride and 5‐fluorouracil. The homopolymer of ETBFU and its copolymers with acrylic acid (AA) or vinyl acetate (VAc) were prepared by photopolymerization using 2,2‐dimethoxy‐2‐phenylacetophenone as an initiator at 25 °C. The synthesized ETBFU and its polymers were identified by FTIR, 1H NMR and 13C NMR spectroscopies. The ETBFU content in poly(ETBFU‐co‐AA) and poly(ETBFU‐co‐VAc) was 43 and 14 mol%, respectively. The apparent number‐average molecular weight (Mn) of the polymers determined by GPC ranged from 8400 to 11 300. The in vitro cytotoxicity of the samples against mouse mammary carcinoma (FM3A), mouse leukaemia (P388), and human histiocytic lymphoma (U937) cancer cell lines decreased in the order 5‐FU ≥ ETBFU > poly(ETBFU) > poly(ETBFU‐co‐AA) > poly(ETBFU‐co‐VAc). The in vivo antitumour activity of the polymers against Balb/C mice bearing sarcoma 180 tumour cells was greater than that of 5‐fluorouracil at all doses tested. © 2000 Society of Chemical Industry  相似文献   

8.
New type accordion polymers with azo‐dye chromophores as the major segments (up to 70% by weight) of the main chain for second optical non‐linearity (NLO) are designed and synthesized by the Knoevenagel polycondensation between bis(carboxaldehyde) containing azobenzene and bis(cyanoacetate) comonomers. Several important properties for NLO application, such as solubility and thermal stability, are investigated, and the effects of linkage groups on the physical properties of polymers are also discussed in some detail. Poled films of one of these polymers show a relatively high resonant d33 value of 33 pm V−1 by second harmonic generation (SHG) measurement, and their order parameter, which is determined to be 0.20 by UV–vis measurement, keep almost constant for 240 h at ambient temperature. © 2000 Society of Chemical Industry  相似文献   

9.
Water‐soluble thermosensitive polymers having phosphonium groups were synthesized by the copolymerization of N‐isopropylacrylamide (NIPAAm) with methacryloyloxyethyl trialkyl phosphonium chlorides (METRs) having varying alkyl lengths. The relative viscosities of the copolymer solutions increased with increasing content of phosphonium groups in the copolymers and decreased with increasing chain length of alkyl chains in the phosphonium groups. However, the copolymers of METR with octyl groups in phosphonium groups (METO) and NIPAAm became water insoluble with increasing contents of METO moieties in the copolymers. The transmittance at 660 nm of the copolymer solutions above the lower critical solution temperature (LCST) decreased gradually with increasing temperature and decreased with increasing chain length of alkyl chains in the phosphonium groups. The transmittance at 660 nm of the copolymer solutions above the LCST was greatly affected by the addition of neutral salts such as KCl. The copolymers of METR with ethyl groups in phosphonium groups and NIPAAm and those of METR with butyl groups in phosphonium groups and NIPAAm had high flocculating abilities against bacterial suspensions. The METO–NIPAAm copolymer was found to have a high antibacterial activity. The flocculating ability and the antibacterial activity of the copolymers were affected by not only the content of phosphonium groups but also the alkyl chain length in the phosphonium groups in the copolymers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 386–393, 2003  相似文献   

10.
Two novel cyclic‐amine monomers, i.e., 3‐allyl‐5,5‐dimethylhydantoin (ADMH) and 7,8‐benzo‐3 allyl‐1,3‐diazasprio[4.5]decane‐2,4‐dione (BADDD) were synthesized with good yields by reacting allyl bromide with 5,5‐dimethylhydantoin (DMH) and 7,8‐benzo‐1,3‐diazasprio[4.5]decane‐2,4‐dione (BDDD), respectively. The synthesized monomers were characterized by FTIR and 1H‐NMR spectra, and copolymerized with acrylonitrile (AN), vinyl acetate (VAC), and methyl methacrylate (MMA) in a small monomer ratio of ADMH and BDDD, respectively. The copolymers were characterized by FTIR, 1H‐NMR, and DSC studies. The N‐halamine derivatives of the corresponding copolymers were found to exhibit high antibacterial activities against Escherichia coli, and the antibacterial properties were durable and regenerable. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2460–2467, 2001  相似文献   

11.
BACKGROUND: Materials with antibacterial surface properties have attracted extensive scientific interest for research and development in the battle against microbial contamination. The application of antimicrobial polymers minimizes environmental problems and enhances the efficiency, selectivity and lifetime of the antimicrobial agents. In this paper polyimide (PI) films are chosen as the polymeric substrate to be modified due to the good thermal, mechanical and physicochemical properties of PI. The method of preparing PI films with antibacterial surfaces using surface‐initiated atom‐transfer radical polymerization (ATRP) is described. RESULTS: The results from X‐ray photoelectron spectroscopy showed that the surfaces at each stage were modified successfully. The pyridinium groups introduced on the PI surface possessed antibacterial properties and the bactericidal effect of the functionalized PI films on Escherichia coli was evaluated. Quaternization of the pyridine rings of the poly(4‐vinylpyridine) (P4VP) brushes gave rise to a high concentration of quaternary pyridinium groups on the PI film surfaces. The antibacterial efficiency of the modified PI film was dependent on the amount of quaternary pyridinium groups on the surface. CONCLUSION: In this research, functional polymer brushes of P4VP were prepared via surface‐initiated ATRP from PI films, followed by alkylation of the grafted P4VP with hexyl bromide. The surface functionalization method described has the advantage of being effective in conferring antibacterial properties on polymeric materials. Copyright © 2008 Society of Chemical Industry  相似文献   

12.
Superabsorbent polymer gels were synthesized by terpolymerization of three kinds of tri‐n‐alkyl‐4‐vinylbenzyl phosphonium chloride (TRVB) with alkyl chains of different lengths, with acrylamide (AAm), and with N,N′‐methylenebisacrylamide (MBAAm). The water‐absorption ability and antibacterial activity of the gels against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were investigated. The water content of TRVB–AAm–MBAAm terpolymers increased with increasing phosphonium groups in the terpolymers, while the water content decreased with increasing chain length of alkyl groups in the phosphonium groups as well as an increasing degree of crosslinking in the terpolymers. The water content of the terpolymers was depressed by the addition of NaCl. The degree of effect of NaCl addition became higher as the chain length of alkyl groups in the phosphonium groups of the terpolymers became longer. The tri‐n‐octyl‐4‐vinylbenzyl phosphonium chlorides (TOVB)–AAm–MBAAm terpolymers exhibited high antibacterial activity against S. aureus and E. coli in deionized water. The antibacterial activity decreased in 0.9 wt % NaCl solution. The antibacterial activity of TOVB–AAm–MBAAm terpolymers with almost the same phosphonium content increased with the increasing swelling ratio of the terpolymers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1833–1844, 2000  相似文献   

13.
Water‐soluble polymers have attracted much interest due to their potential applications in environmental protection engineering to remove harmful pollutants and in biomedicine in the areas of tissue engineering, within‐body implants or other medical devices, artificial organ prostheses, ophthalmology, dentistry, bone repair, and so on. In this review, particular emphasis is given to the ability of water‐soluble polymers with amine, amide, carboxylic acid, hydroxyl and sulfonic acid functional groups to remove metal ions by means of the liquid‐phase polymer‐based retention (LPR) technique that combines the use of water‐soluble polymers and ultrafiltration membranes. The second part is dedicated to showing the potential application of functional water‐soluble polymers and their polymer–metal complexes as biocides for various bacteria. These polymers and polymer–metal complexes show an efficient bactericide activity, especially to Gram‐negative bacteria, Staphylococcus aureus reaching concentrations lower than 4 µg mL?1. This activity depends on polymer size, type of metal ion, contact time and concentration of polymer and metal ion. The discussion reveals that in the case of the LPR process the efficiency of metal ion removal depends strongly on the type of polymer functional group and the feed pH value. In general, two mechanisms of ion entrapment are suggested: complex formation and electrostatic interaction. In the case of the medical use of water‐soluble polymers and their complexes with metal ions, the review documents the unique bactericide properties of the investigated species. The polymer‐metal ion complexes show a reduced genotoxic activity compared with free metal ions. Copyright © 2009 Society of Chemical Industry  相似文献   

14.
Thermosensitive and superabsorbent polymer hydrogels were synthesized by copolymerization of three kinds of tri‐n‐alkyl vinylbenzyl phosphonium chlorides (TRVB) with different lengths of alkyl chains, N‐isopropylacrylamide (NIPAAm), and N,N′‐methylenebisacrylamide (MBAAm). The water‐absorption ability and antibacterial activity of the hydrogels against Staphylococcus aureus (S. aureus) were investigated. The water content of TRVB–NIPAAm–MBAAm copolymers decreased with increasing temperature and increased with increasing phosphonium groups in the copolymers, while it decreased with increasing chain length of the alkyl groups in the phosphonium groups as well as with an increasing degree of crosslinking in the copolymers. The TRVB–NIPAAm–MBAAm copolymers with a higher TRVB content in the copolymers exhibited higher antibacterial activity against S. aureus, but decreased with increasing chain length of alkyl groups in phosphonium groups. The TRVB–NIPAAm–MBAAm copolymers exhibited the highest antibacterial activity at 30°C against S. aureus in deionized water. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 115–124, 2001  相似文献   

15.
Arylamine polymers were prepared via the facile one‐step addition condensation of N,N′‐diphenyl‐N,N′‐bis(4‐methylphenyl)‐1,4‐phenylenediamine and 4‐methoxytriphenylamine with paraldehyde. The polymers were highly soluble in common organic solvents. The non‐conjugated arylamine polymer structure was characterized and found to form tough, homogeneous, amorphous layers with a glass transition temperature above 200 °C on a substrate by a simple spin‐coating process. The polymer layers exhibited a hole mobility of the order of 10?5 cm2 V?1 s?1, which was comparable with those of previously reported arylamine polymers, and a highest occupied molecular orbital level of ?5.38 eV appropriate for the hole‐transporting layer of perovskite solar cells. The perovskite cells fabricated with the polymers gave a photovoltaic conversion efficiency of 16.0%. © 2018 Society of Chemical Industry  相似文献   

16.
A novel cyclic‐amine monomer, 3‐allyl‐5,5‐dimethylhydantoin (ADMH) was synthesized with good yield by the reaction of allyl bromide with 5,5‐dimethylhydantoin (DMH), and was characterized by FTIR and 1H‐NMR spectra. ADMH alone cannot be grafted onto other polymers. However, the presence of acrylonitrile markedly enhanced the ADMH graft yield onto cotton cellulose. The influence of reaction conditions on the graft copolymerization was investigated. After chlorine bleach treatment, hydantoin units in the grafted copolymers were easily transformed into N‐halamine structures. Grafted samples exhibited potent antibacterial activity against Escherichia coli, and the functional properties were shown to be durable and regenerable. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 617–624, 2001  相似文献   

17.
Copolymers of 4‐vinylpyridine and styrene [P(4VP–St)s] with varied molar ratios were synthesized by means of radical mass polymerization with 2,2′‐azobisisobutyronitrile as an initiator. The insoluble (linear) pyridinium‐type polymers in the octyl‐pyridinium bromide form, which possess various macromolecular chain compositions, were prepared by the reaction of each P(4VP–St) with 1‐bromooctane. A series of membranes were prepared for use in electrochemistry. These membranes, prepared with quaternized poly(styrene‐co‐4‐vinylpyridine), were characterized by IRspectroscopy, X‐ray diffraction, differential scanning calorimetry, thermogravimetory, tensile strength measurements, scanning electron microscopy, and an electrochemistry workstation. Our emphasis was to select a membrane with appropriate properties for use in the electrochemistry field. A promising membrane was selected to use in the field of electrochemistry by these characterizations. This study could be the preparation for a study on the electrochemical properties of pyridinium‐type polymers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2146–2153, 2005  相似文献   

18.
Reactions of N‐(2,4‐dinitrophenyl)‐4‐arylpyridinium chlorides (aryl (Ar) = phenyl and 4‐biphenyl) with piperazine or homopiperazine caused opening of the pyridinium ring and yielded polymers that consisted of 5‐piperazinium‐3‐arylpenta‐2,4‐dienylideneammonium chloride (? N(CH2CH2)2N+ (Cl?)?CH? CH?C(Ar)? CH?CH? ) or 5‐homopiperazinium‐3‐arylpenta‐2,4‐dienylideneammonium chloride (? N(CH2CH2CH2)(CH2CH2)N+ (Cl?)?CH? CH?C(Ar)? CH?CH? ) units. 1H NMR spectral analysis suggested that the π‐electrons of the penta‐2,4‐dienylideneammonium group of the polymers were delocalized. UV‐visible spectral measurements revealed that the π‐conjugation system expanded along the polymer chains because of the orbital interaction between electrons of the two nitrogen atoms of the piperazinium and homopiperazinium rings. However, the π‐conjugation length depended on the distance between the two nitrogen atoms; that is, the polymers containing the piperazinium ring had a longer π‐conjugation length than those containing the homopiperazinium ring. Conversion of the piperazinium and homopiperazinium rings from the boat to the chair form led to a decrease in the π‐conjugation length. The surface of pellets that were molded from the polymers exhibited metallic luster, and these polymers underwent electrochemical oxidation in solution. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
Poly(2‐acrylamido glycolic acid‐co‐2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) [P(AGA‐co‐APSA)] was synthesized by radical polymerization in an aqueous solution. The water‐soluble polymer, containing secondary amide, hydroxyl, carboxylic, and sulfonic acid groups, was investigated, in view of their metal‐ion‐binding properties, as a polychelatogen with the liquid‐phase polymer‐based retention technique under different experimental conditions. The investigated metal ions were Ag+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Pb2+, and Cr3+, and these were studied at pHs 3, 5, and 7. P(AGA‐co‐APSA) showed efficient retention of all metal ions at the pHs studied, with a minimum of 60% for Co(II) at pH 3 and a maximum close to 100% at pH 7 for all metal ions. The maximum retention capacity (n metal ion/n polymer) ranged from 0.22 for Cd2+ to 0.34 for Ag+. The antibacterial activity of Ag+, Cu2+, Zn2+, and Cd2+ polymer–metal complexes was studied, and P(AGA‐co‐APSA)–Cd2+ presented selective antibacterial activity for Staphylococcus aureus with a minimum inhibitory concentration of 2 μg/mL. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Four‐arm star‐shaped polymers and copolymers were obtained by transition metal‐catalyzed atom‐transfer radical polymerization (ATRP). The polymers were characterized by FTIR and 1H‐NMR spectroscopy. Gel permeation chromatography results indicated the formation of polystyrene and polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA) arms with controlled molecular weights. In dilute solution, the linear polymers had higher inherent viscosities than star‐shaped ones. Thermogravimetric analysis showed a similar degradation mechanism for linear and star‐shaped polymers. Differential scanning calorimetry indicated the successful formation of diblock star‐shaped copolymers. Copyright © 2006 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号