首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conductive composites of polyaniline (PAn) and chlorosulfonated polyethylene (CSPE) were prepared by polymerization of aniline in the presence of CSPE, using a direct, one‐step in situ emulsion polymerization method. The polymerization of aniline was performed in an emulsion comprising water and xylene containing CSPE in the presence of dodecylbenzene sulfonic acid, which acts both as a surfactant and a dopant for PAn. The composites can be processed by either melt method (MP) or solution method (SP). Conductivity of the composites obtained by different processing methods shows different percolation thresholds: 14 wt % for MP samples and 22 wt % for SP samples. At the same content of PAn, the conductivity of MP composites is higher than that of SP composites. The relationships between mechanical properties and PAn content obtained by the two different processing methods were also investigated. When PAn content of MP samples is between 12 and 18 wt %, the composites behave like a thermoplastic elastomer with tensile strength at 6–8 MPa, ultimate elongation > 400% and permanent set < 30%. The conductivity of composites obtained by SP method after secondary doping with m‐cresol is about 6 orders of magnitude higher than the original at below 18 wt % PAn content and the percolation threshold for conductivity is lowered to 3 wt % PAn content. The composite shows no electrochromic activity in acidic solution of LiClO4 in propylene carbonate, but after secondary doping exhibits electrochromic activity even in neutral electrolyte. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 845–850, 2000  相似文献   

2.
As novel piezoelectric materials, carbon‐reinforced polymer composites exhibit excellent piezoelectric properties and flexibility. In this study, we used a styrene–butadiene–styrene triblock copolymer covalently grafted with graphene (SBS‐g‐RGO) to prepare SBS‐g‐RGO/styrene–butadiene–styrene (SBS) composites to enhance the organic solubility of graphene sheets and its dispersion in composites. Once exfoliated from natural graphite, graphene oxide was chemically modified with 1,6‐hexanediamine to functionalize with amino groups (GO–NH2), and this was followed by reduction with hydrazine [amine‐functionalized graphene oxide (RGO–NH2)]. SBS‐g‐RGO was finally obtained by the reaction of RGO–NH2 and maleic anhydride grafted SBS. After that, X‐ray diffraction, X‐ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and other methods were applied to characterize SBS‐g‐RGO. The results indicate that the SBS molecules were grafted onto the graphene sheets by covalent bonds, and SBS‐g‐RGO was dispersed well. In addition, the mechanical and electrical conductivity properties of the SBS‐g‐RGO/SBS composites showed significant improvements because of the excellent interfacial interactions and homogeneous dispersion of SBS‐g‐RGO in SBS. Moreover, the composites exhibited remarkable piezo resistivity under vertical compression and great repeatability after 10 compression cycles; thus, the composites have the potential to be applied in sensor production. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46568.  相似文献   

3.
以十二烷基苯磺酸为乳化剂及掺杂剂,由二甲苯及水组成乳液,在氯磺化聚乙烯存在下,采用一步原位乳液聚合法制备了聚苯胺/氯磺化聚乙烯(PAn/CSPE)导电复合材料。研究了用熔融法(MP)或溶液法(SP)加工复合物材料的导电性及力学性能,并进行了表征。结果表明,MP法制得的复合材料在导电性及力学性能方面优于SP法制得的复合材料;当PAn质量分数为12%~18%时,MP法复合材料呈现热塑性弹性体行为,拉伸强度为6~8MPa,扯断伸长率大于400%,永久变形小于30%。当PAn质量分数小于18%时,SP法复合材料用闻甲酚二次渗杂后的导电率比原复合材料高出6个数量级,且其导电渗滤阈值由PAn质量分数22%降至3%。  相似文献   

4.
The composites of polyaniline (PAn) and zinc sulfonated ethylene–propylene–diene rubber (EPDM) ionomer were made by polymerization of aniline in the presence of the ionomer by using a direct, one‐step in situ emulsion polymerization technique. The ionomers were prepared by sulfonation of EPDM rubber with acetyl sulfate in petroleum ether, followed by neutralization with zinc acetate solution. The ionomers with sulfonate contents of 10, 24, and 42 mmol SO3H/100 g were used for preparation of PAn/ionomer composites. The in situ polymerization of aniline was carried out in an emulsion comprising water and xylene containing the ionomer in the presence of dodecyl benzene sulfonic acid, acting as both a surfactant and a dopant for PAn. The composite was characterized by IR and WAXD. The composite obtained can be processed by melt method. The conductivity of the composite with lower sulfonate content was higher than that with higher sulfonate content. Conductivity of the composites exhibits a percolation threshold at about 13 wt % PAn. When the sulfonated content is 10 or 24 mmol SO3H/100 g and PAn content is 4–10 wt %, the composites behave as a thermoplastic elastomers with high ultimate elongation and low permanent set. The conductivity of the composite after secondary doping with m‐cresol is higher than the composite before secondary doping by about one order. Addition of zinc stearate as an ionic plasticizer lowers both the conductivity and the mechanical strength of the composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2211–2217, 2004  相似文献   

5.
《Polymer Composites》2017,38(1):157-163
The filled conductive composites were prepared with a polycarbonate/acrylonitrile butadiene styrene matrix and both nickel‐coated carbon fiber (NiCF) and nickel–graphite powder (NCG) as fillers by using injection molding and injection‐compression molding. The effect of the NiCF content, NCG content, coupling agent, and molding methods on the properties of composites was studied. The results showed that the conductivity of the composites increased with raising the NiCF content and NCG content. NiCF treated with silane coupling agent could further improve the conductivity of the composites without any significant change in mechanical properties. Furthermore, compared with injection molding, the composites prepared by injection‐compression molding possessed better conductivity. POLYM. COMPOS., 38:157–163, 2017. © 2015 Society of Plastics Engineers  相似文献   

6.
Clay/styrene–butadiene–styrene (SBS) modified bitumen composites were prepared by melt blending with different contents of sodium montmorillonite (Na‐MMT) and organophilic montmorillonite (OMMT). The structures of clay/SBS modified bitumen composites were characterized by XRD. The XRD results showed that Na‐MMT/SBS modified bitumen composites may form an intercalated structure, whereas the OMMT/SBS modified bitumen composites may form an exfoliated structure. Effects of MMT on physical properties, dynamic rheological behaviors, and aging properties of SBS modified bitumen were investigated. The addition of Na‐MMT and OMMT increases both the softening point and viscosity of SBS modified bitumens and the clay/SBS modified bitumens exhibited higher complex modulus, lower phase angle. The high‐temperature storage stability can also be improved by clay with a proper amount added. Furthermore, clay/SBS modified bitumen composites showed better resistance to aging than SBS modified bitumen, which was ascribed to barrier of the intercalated or exfoliated structure to oxygen, reducing efficiently the oxidation of bitumen, and the degradation of SBS. POLYM. ENG. SCI., 47:1289–1295, 2007. © 2007 Society of Plastics Engineers  相似文献   

7.
This work is concerned with the preparation and characterization of composite materials prepared by compression molding of mixtures of copper powder and a commercial grade thermosetting resin of urea–formaldehyde filled with α‐cellulose in powder form. The electrical conductivity of the composites is <10−12 S/cm, unless the metal content reaches the percolation threshold of 24.0 vol %, beyond which the conductivity increases markedly by as much as 11 orders of magnitude, indicating an insulator–conductor phase transition. The homogeneity of these composites was checked by the morphologies of the constituents (filler and matrix) and the composites characterized by optical microscopy. The density of the composites was measured and compared with values calculated assuming different void levels within the samples to discuss the porosity effect. Finally, the obtained results on electrical conductivity have been well interpreted with the statistical percolation theory. The deduced critical parameters, such as the threshold of percolation, Vf*, the critical exponent, t, and the packing density coefficient, F, were in good accord with earlier studies. In addition, the hardness of samples remained almost constant with the increase of metal concentration. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers  相似文献   

8.
The viscoelastic relaxation of linear styrene–butadiene–styrene triblock copolymer (l‐SBS) and star styrene–butadiene–styrene triblock copolymer (s‐SBS) with four arms were investigated with differential scanning calorimetry and dynamic rheological measurements. Three characteristic viscoelastic responses of l‐SBS and s‐SBS in the plot of the loss tangent (tan δ) and temperature at different frequencies (ω's), which corresponded to the relaxation of the polybutadiene (PB) block (peak I), the glass transition of the polystyrene (PS) phase (peak II), and the mutual diffusion between the PB blocks and PS blocks (peak III), respectively, were observed in the experimental range. Although ω was 0.1 rad/s, a noticeable peak III was gained for both l‐SBS and s‐SBS. The dynamic storage modulus (G′) of l‐SBS showed two distinct types of behavior, depending on the temperature. At temperature (T) < T2 (where T2 is the temperature corresponding to peak II), G′ of l‐SBS displayed a very weak ω dependency. In contrast, at T > T2, G′ decayed much more rapidly. However, G′ of s‐SBS displayed a very weak ω dependency at both T < T2 and T > T2. Only near T2 did s‐SBS decay with ω a little sharply. These indicated, in contrast to l‐SBS, that s‐SBS still exhibited more elasticity even at T > T2 because of its crosslinking point between the PB blocks (the star structure). In the lower ω range, l‐SBS exhibited a stronger peak III than s‐SBS despite the same styrene content for l‐SBS and s‐SBS. The high tan δ value of peak III for l‐SBS was considered to be related to the internal friction among the PB blocks or the whole l‐SBS chain, not the PS blocks. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
The electrical resistivity and morphology of high impact polystyrene (HIPS)/styrene‐butadiene‐styrene triblock copolymer (SBS)/carbon black (CB) blends were studied. Their antistatic sheets were prepared by both compression‐molding and extrusion calendaring process, with their surface morphology observed using scanning electron microscopy (SEM). The SEM images reveal better dispersion of CB achieved in extrusion‐calendering, resulting in low percolation threshold values in HIPS composites. Higher compression ratio and higher drawing speed (corresponding lower sheet thickness) are beneficial to get better CB dispersion, leading to decreased conductivity for the antistatic sheets. SEM images indicate that strong shear forces in extrusion tend to break the conductive network of CB, resulting in increased surface resistivity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
In this study, styrene‐butadiene‐styrene tri‐block copolymer/multiwalled carbon nanotubes (SBS/MWNTs) were prepared by means of a solution blending method. To enhance the compatibility between SBS and MWNTs, the SBS grafted MWNTs (SBS‐g‐MWNTs) were used to replace MWNTs. The MWNTs were chemically hydroxylated by the dissolved KOH solution with ethanol as solvent and then reacted with 3‐Aminopropyltriethoxysilane (APTES) to functionalize them with amino groups (MWNT‐NH2). The SBS‐g‐MWNTs were finally obtained by the reaction of MWNT‐NH2 and maleic anhydride grafted SBS (MAH‐g‐SBS). The SBS‐g‐MWNTs were characterized by X‐ray photoelectron spectroscopy (XPS), Fourier transform‐infrared spectroscopy (FT‐IR), transmission electron microscopy (TEM), scanning electron microscope (SEM), and thermogravimetric analysis (TGA). The results showed that the SBS molecules were homogeneously bonded onto the surface of the MWNTs, leading to an improvement of the mechanical and electrical properties of SBS/SBS‐g‐MWNTs composites due to the excellent interfacial adhesion and dispersion of SBS‐g‐MWNTs in SBS. A series of continuous tests were carried out to explore the electrical‐mechanical properties of the SBS/SBS‐g‐MWNTs composites. We found out that, near the percolation threshold, the well‐dispersed SBS/SBS‐g‐MWNTs composites showed good piezoresistive characteristics and small mechanical destructions for the development of little deformation under vertical pressure. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42945.  相似文献   

11.
The factors influencing the mechanical properties of styrene–butadiene–styrene block copolymer (SBS) composites filled with liquid polybutadiene (LB)‐surface‐treated calcium carbonate (CaCO3) were investigated with respect to the molecular structure of the LB, the amount of the LB adsorbed on the CaCO3 surface, the heat treatment conditions, and the surface treatment method. The mechanical properties, such as the modulus, tensile strength at break, tear strength, storage modulus, and tension set, of the SBS composites were improved remarkably through the filling of CaCO3 surface‐treated with a carboxylated LB with a high content of 1,2‐double bonds. The heat treatment of LB–CaCO3 in air was also effective in enhancing such properties. When SBS, CaCO3, and LB were directly blended (with the integral blend method), secondary aggregation of CaCO3 took place, and the mechanical properties of the composite were significantly lower. In the integral blend method, LB functioned as a plasticizer. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
A styrene–butadiene–styrene triblock copolymer (SBS) was grafted with polyoxyethylene via a ring‐opening reaction of an epoxidized styrene–butadiene– styrene triblock copolymer (ESBS) with monocarboxylic‐group‐terminated methoxypoly(ethylene glycol) (CMPEG). The latter was prepared through the esterification of methoxypoly(ethylene glycol) with maleic anhydride. The optimum conditions for the preparation of the graft copolymer were studied. The graft copolymer was characterized with Fourier transform infrared spectrophotometry. Its water absorbency, oil absorbency, emulsifying property, phase‐transfer catalysis property in the Williamson solid–liquid reaction, and use as a compatibilizer in the blending of SBS with oil‐resistant chlorohydrin rubber (CHR) were also studied. The optimum conditions were a CMPEG/epoxy group molar ratio of 1.5, an N,N‐dimethyl aniline/ESBS concentration of 5 wt %, and an ESBS concentration of 12–14 g/100 mL at 75–80°C for 10 h. The polyoxyethylene content could reach 0.27 mmol/g. The graft copolymer absorbed a certain amount of water, fairly resisted kerosene, and possessed good emulsifying and phase‐transfer catalysis properties, both of which were enhanced with increasing polyoxyethylene graft content. The graft copolymer could be used as a compatibilizer for a blend of SBS and CHR. A 3 wt % concentration of the graft copolymer based on a 50/50 blend could increase both the tensile strength and ultimate elongation of the blend about 1.7 times. The blend behaved like an oil‐resistant thermoplastic elastomer. Scanning electron microscopy demonstrated the improved compatibility of the two components by the graft copolymer. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Conductive polymer composites of segmented polycarbonatediol polyurethane and expanded graphite (EG) have been synthesized with different amounts of EG conductive filler (from 0 to 50 wt%). SEM, X‐ray diffraction measurements, Fourier transform infrared and Raman spectroscopies demonstrated a homogeneous dispersion of the EG filler in the matrix. The dielectric permittivity of the composites showed an insulator to conductor percolation transition with increase in EG content. Significant changes in the dielectric permittivity take place when the weight fraction of EG is in the range 20–30 wt%. Special attention has been paid to the dependence of the conductivity on frequency, temperature and EG content. The addition of EG to the matrix causes a dramatic increase in the electrical conductivity of 10 orders of magnitude, which is an indication of percolative behavior. A percolation threshold of ca 30 wt% was evaluated by using the scaling law of percolation theory. © 2014 Society of Chemical Industry  相似文献   

14.
This article is concerned with the preparation and characterization of composite materials prepared by the compression molding of mixtures of zinc powder and urea–formaldehyde embedded in cellulose powder. The morphologies of the constituent, filler, and matrix were investigated by optical microscopy. The elaborated composites were characterized by density, which was compared with calculated values, and the porosity rate was deduced. Further, the hardness of samples remained almost constant with increasing metal concentration. The electrical conductivity of the composites was less than 10?11 S/cm unless the metal content reached the percolation threshold at a volume fraction of 18.9%, beyond which the conductivity increased markedly, by as much as eight orders of magnitude. The obtained results interpreted well with the statistical percolation theory. The deduced critical parameters, such as the threshold of percolation, the critical exponent t, and the packing density coefficient were in good accord with earlier studies. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2011–2015, 2005  相似文献   

15.
A star‐shape styrene–butadiene–styrene triblock copolymer SBS (802) was synthesized and fractionated into four fractions coded as 802‐F1 (four arms), 802‐F2 (two arms), 802‐F3 (one arm), and 802‐F4 by repeating fractional precipitation. Their weight‐average molecular weight (Mw) was measured by size‐exclusion chromatography combined with laser light scattering to be 16.0 × 104, 8.2 × 104, 4.3 × 104, and 1.19 × 104, respectively. The samples were, respectively, compression‐molded and solution‐cast to obtain the sheets coded as 802C, 802‐F1C, 802‐F2C, and 802S, 802‐F1S, 802‐F2S. The structures and mechanical properties of the sheets were characterized by 1H‐NMR, scanning electron microscope, wide‐angle X‐ray diffractometer, tensile testing, and dynamic mechanical thermal analysis. The results indicated that the compression‐molded 802‐F1C exhibited the higher tensile strength (σb, 28.4 MPa) and elongation at break (εb, 1610%), and its optical transmittance is much higher than those of 802C and 802‐F2C. This work revealed that the star‐shape SBS with four arms could be helpful in the enhancement of the properties as a result of good miscibility of the compression‐molded SBS sheets. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 832–840, 2005  相似文献   

16.
Electrically conductive rubberlike copolymer–carbon fiber composites have been prepared by either a solution method or a concentrated emulsion method. In the former procedure, carbon fibers were introduced with stirring in a copolymer–toluene solution, and the polymer–fiber composites were precipitated by extracting the solvent with methanol. In the latter procedure, a pastelike concentrated emulsion of copolymer–toluene solution in an aqueous solution of sodium dodecylsulfate (SDS) was first formed, and the carbon fibers were mechanically blended with the concentrated emulsion. The polymer–carbon fiber composites were precipitated by extracting the toluene and water with methanol. Four kinds of rubberlike copolymers have been used: styrene/ethylene–butylene/styrene triblock copolymer (SES), styrene/butadiene/styrene triblock copolymer (SBS), ethylene/propene/ethylene triblock copolymer (EPE), and ethylene/vinylacetate copolymer (EVA). Short (L = 0.1 mm)- and medium (L = 5 mm)-length carbon fibers were employed. The composites were hot-pressed in a Laboratory Press to form a sheet. The effects of the two methodologies on the electrical conductivity and mechanical properties of the sheets were investigated by changing the type of polymer, the size of the carbon fibers, the volume fraction of the carbon fibers in the composites, and the hot-pressing temperature. Composites with electrical conductivities in the range of 5–14 S/cm, tensile strengths in the range of 10–17 MPa, and elongations at break point larger than 200% were obtained. The conductivities of the composites prepared with the short fibers were by two orders of magnitude smaller than those prepared with medium-size fibers. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
Polyaniline was doped with dodecylbenzenesulfonic acid (Pani · DBSA) in an agate mortar and used as a conductive additive in melt blends with styrene–butadiene–styrene (SBS) block copolymer. These blends exhibit relatively high levels of electrical conductivity at low‐weight fractions of the polyaniline complex. The melt blending process, performed in a two‐roll mill or in a Haake internal mixer, increased the protonation degree of the Pani · DBSA, as indicated by X‐ray photoelectron spectroscopy analysis. This result confirms the occurrence of a second doping process at high temperature. The mechanical performance decreases as the amount of Pani · DBSA in the blend increases, indicating a plasticizing effect of the DBSA. The higher temperature used in blending imparts better conductivity value but gives rise to a strong crosslinked material because of the presence of the sulfonic acid and the high extent of double bonds in the SBS compound. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 626–633, 2001  相似文献   

18.
Prelocalized Acrylonitrile Butadiene Styrene/graphite composites were prepared by hot compression molding technique. The increased conductivity with increase of graphite content exhibits percolation phenomenon. The current–voltage characteristics are found to change from nonlinear to linear above the percolation threshold. A positive temperature coefficient of resistance is observed in these composites, and this effect is more pronounced in samples having graphite concentration near percolation threshold. The dielectric constant was found to increase slowly up to the percolation concentration and beyond it a sudden increase in its value is observed. The dissipation factor exhibits maxima in the vicinity of percolation threshold. The dielectric properties are discussed in terms of the interfacial Maxwell‐Wagner effects. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
We successfully synthesized an exfoliated styrene–butadiene–styrene triblock copolymer (SBS)/montmorillonite nanocomposite by anionic polymerization. Gel permeation chromatography showed that the introduction of organophilic montmorillonite (OMMT) resulted in a small high‐molecular‐weight fraction of SBS in the composites, leading to a slight increase in the weight‐average and number‐average molecular weights as well as the polydispersity index. The results from 1H‐NMR revealed that the introduction of OMMT almost did not affect the microstructure of the copolymer when the OMMT concentration was lower than 4 wt %. Transmission electron microscopy and X‐ray diffraction showed a completely exfoliated nanocomposite, in which both polystyrene and polybutadiene blocks entered the OMMT galleries, leading to the dispersion of OMMT layers on a nanoscale. The exfoliated nanocomposite exhibited higher thermal stability, glass‐transition temperature, elongation at break, and storage modulus than pure SBS. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

20.
Four styrene–butadiene–styrene(SBS) modified bitumens had been prepared by a base bitumen, a crosslinking agent and four SBS copolymers which differ in styrene blocks content and molecular configuration (radial or linear) under the same experimental conditions. Conventional properties, morphology, thermal behavior and microstructure were investigated by means of conventional tests, fluorescence microscopy, differential scanning calorimetry (DSC), and Fourier transform infrared (FT‐IR) spectroscopy. In terms of linear SBS polymers, the SBS molecule with the styrene content of 30% has a perfect dispersion and complete stretching in bitumen matrix, and in this case, the conventional properties and thermal stability of bitumen are enhanced substantially. However, the star SBS polymer due to long branched chains forming the preferable steric hindrance to enhance the intensity of base bitumen, plays a more important role in improving the conventional properties of base bitumen than linear SBS polymers. Furthermore, the FT‐IR spectra indicate that, the main bands assignations of four modified bitumens are identical and the significant variation is the peak intensity. And a noncomplete crosslinking reaction happens between the bitumen and each SBS polymer, which can efficiently prevent excessive cross‐linking from affecting the intrinsic bitumen characteristics. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40398.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号