首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of interfacial crosslinking on miscibility behavior in blend systems of isocyanate‐functionalized poly(n‐butyl methacrylate) (PBMA) and a carboxylic alkali‐soluble resin, poly(styrene/alpha‐methylstyrene/acrylic acid) (SAA), was studied with different dimethyl meta‐isopropenyl benzyl isocyanate (TMI) concentrations. For the blend films of pure PBMA and SAA, both theoretical analysis and direct observation showed immiscibility between PBMA and SAA. For the blend systems of isocyanated PBMA and SAA, Fourier transform infrared spectra and gel permeation chromatography analyses qualitatively showed the crosslinking between the isocyanate group in isocyanated PBMA and the carboxylic group in SAA. Two tan δ peaks were shown in the blend system of SAA and isocyanated PBMA containing low concentrations of TMI (from 0 to 5 wt %), and the span of the two peaks became shorter as the TMI concentration increased. For a high TMI concentration (7 wt %), only one tan δ peaks was observed. This result means the interfacial crosslinking between isocyanated PBMA and SAA occurred fully, and thus the miscibility between two polymers was significantly improved. As these results showed, the tensile strength of the blend film of isocyanated PBMA and SAA was higher than that of pure PBMA and SAA. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 792–798, 2003  相似文献   

2.
Transparent conducting latex films have been prepared from core‐shell latices. The latex particles have a poly(butyl methacrylate) (PBMA) core of about 700 nm and a very thin polypyrrole (PPy) shell. We have studied the film formation of latices with 1, 2, and 4 wt % PPy and compared this with the film formation of the pure PBMA latex. The film formation process was studied by transparency measurements, atomic force microscopy surface flattening, and transmission electron microscopy on ultrathin sections of films after various annealing times at 120°C. It is demonstrated that highly transparent (>90%) and antistatic films can be produced using these latices. The presence of a polypyrrole shell around the PBMA latex particle seriously hinders the deformation of the particles. The amount of polypyrrole, and thus the shell thickness, is the determining factor for the speed of film formation. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 900–909, 2001  相似文献   

3.
Polyurethane (PU) prepolymer was first prepared via introducing double bonds on‐to the PU chains, and then polyurethane–poly (butyl methacrylate) (PU–PBMA) hybrid latex was prepared via miniemulsion polymerization. Transmission electron microscopy, Differential scanning calorimeter (DSC), Fourier transform infrared, and dynamic mechanical analysis were adopted to characterize the hybrid latex and its coating film. Both the coating property and the miscibility of PU–PBMA emulsion have been greatly improved through introducing double bonds into PU prepolymer. With an increase in the molecule weight of PU (MPU), the increase in the particle size of PU–PBMA emulsion was observed plus decreases in the stability of the hybrid latex and conversion of methacrylate. Besides, as MPU increased, the final dried coating film of the hybrid latex showed decreased water resistance, weakened miscibility, and improved mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Three-component interpenetrating polymer networks (IPNs) comprising polyurethane (PUR), poly(n-butyl methacrylate) (PBMA), and polystyrene (PS) latex particles were prepared in a modified one-shot synthesis. The hydroxy-functionlized and unmodified polystyrene latex particles were synthesized via a seeded emulsion polymerization. The incorporation of hydroxyethyl methacrylate into the latex particles was confirmed via diffuse reflectance infrared analysis and modulated-temperature differential scanning calorimetry. The IPNs were characterized by dynamic mechanical thermal analysis, tensile testing, hardness measurements, and transmission electron microscopy. The three-component materials exhibited higher values for the Young's modulus and the Shore A hardness and for the dynamic storage modulus in the higher temperature range from 80 to 140°C than did the PUR/PBMA IPN alone. The latex particles with the hydroxyl functionality exhibited a better miscibility with the microheterogeneous PUR/PBMA IPN than did unfunctionalized PS latex particles, and, therefore, resulted in materials with better damping properties in the temperature range between 80 and 140°C. Transmission electron micrographs confirmed the imporved miscibility of the functionalized latex particles. The latex particles were not, however, dispersed on an individual level but formed agglomerates of between 2 and 20 μm. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
Alkali-soluble resins (ASRs) are a special type of polymeric surfactant containing both hydrophobic moieties and carboxylic acid functional groups. Upon ionization, ASRs provide electrosteric stabilization to the latex particles, thus allowing reduction or even elimination of conventional surfactants while maintaining or improving latex stability. The distribution of ASR in the dried film depends on its miscibility with the latex polymer. Its presence in the blend system is expected to alter the film formation process and consequently performance properties of paint products based on the latex blends containing ASR. In this study, the effects of a high Tg, alkali-soluble resin (ASR), poly(styrene/alpha-methylstyrene/acrylic acid) terpolymer on the properties of latex and paint films were examined. The film formation of a soft acrylic latex in the absence and presence of the ASR was evaluated using a variety of analytical techniques. As expected, paint properties such as scrub resistance, wet adhesion, and block resistance were also affected by the inclusion of ASR. The results provide new insights into the structure and surface morphology of latex and paint films containing ASRs, as well as their impact on mechanical and the performance properties.  相似文献   

6.
The miscibility or complexation of poly(styrene‐co‐acrylic acid) containing 27 mol % of acrylic acid (SAA‐27) and poly(styrene‐coN,N‐dimethylacrylamide) containing 17 or 32 mol % of N,N‐dimethylacrylamide (SAD‐17, SAD‐32) or poly(N,N‐dimethylacrylamide) (PDMA) were investigated by different techniques. The differential scanning calorimetry (DSC) analysis showed that a single glass‐transition temperature was observed for all the mixtures prepared from tetrahydrofuran (THF) or butan‐2‐one. This is an evidence of their miscibility or complexation over the entire composition range. As the content of the basic constituent increases as within SAA‐27/SAD‐32 and SAA‐27/PDMA, higher number of specific interpolymer interactins occurred and led to the formation of interpolymer complexes in butan‐2‐one. The qualitative Fourier transform infrared (FTIR) spectroscopy study carried out for SAA‐27/SAD‐17 blends revealed that hydrogen bonding occurred between the hydroxyl groups of SAA‐27 and the carbonyl amide of SAD‐17. Quantitative analysis carried out in the 160–210°C temperature range for the SAA‐27 copolymer and its blends of different ratios using the Painter–Coleman association model led to the estimation of the equilibrium constants K2, KA and the enthalpies of hydrogen bond formation. These blends are miscible even at 180°C as confirmed from the negative values of the total free energy of mixing ΔGM over the entire blend composition. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1011–1024, 2007  相似文献   

7.
Structured latex particles with a slightly crosslinked poly(styrene‐n‐butyl acrylate) (PSB) core and a poly(styrene–methacrylate–vinyl triethoxide silane) (PSMV) shell were prepared by seed emulsion polymerization, and the latex particle structures were investigated with Fourier transform infrared, thermogravimetric analysis, differential scanning calorimetry, transmission electron microscopy, and dynamic light scattering. The films that were formed from the structured core (PSB)–shell (PSMV) particles under ambient conditions had good water repellency and good tensile strength in comparison with films from structured core (PSB)–shell [poly(styrene–methyl methyacrylate)] latex particles; this was attributed to the self‐crosslinking of CH2?CH? Si(OCH2CH3)3 in the outer shell structure. The relationship between the particle structure and the film properties was also investigated in this work. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1824–1830, 2006  相似文献   

8.
The mechanical and surface properties of films prepared from model latex/pigment blends were studied using tensile tests, surface gloss measurements, and atomic force microscopy. Functionalized poly(n‐butyl methacrylate‐con‐butyl acrylate) [P(BMA/BA)] and ground calcium carbonate (GCC) were used as latex and extender pigment particles, respectively. The critical pigment volume concentration of this pigment/latex blend system was found to be between 50 and 60 vol % as determined by surface gloss measurement and tensile testing of the blend films. As the pigment volume concentration increased in the blends, the Young's modulus of the films increased. Nielsen's equations were found to fit the experimental data very well. When the surface coverage of carboxyl groups on the latex particles was increased, the yield strength and Young's modulus of the films both increased, indicating better adhesion at the interfaces between the GCC and latex particles. When the carboxyl groups were neutralized during the film formation process, regions with reduced chain mobility were formed. These regions acted as a filler to improve the modulus of the copolymer matrix and the modulus of the resulting films. The carboxyl groups on the latex particle surfaces increased the surface smoothness of the films as determined by surface gloss measurement. When the initial stabilizer coverage of the latex particles was increased, the mechanical strength of the resulting films increased. At the same time, rougher film surfaces also were observed because of the migration of the stabilizer to the surface during film formation. With smaller‐sized latex particles, the pigment/latex blends had higher yield strength and Young's modulus. Higher film formation temperatures strengthen the resulting films and also influence their surface morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4550–4560, 2006  相似文献   

9.
Poly(n‐butyl methacrylate)‐block‐polydimethylsiloxane‐block‐poly(n‐butyl methacrylate) (PBMA‐block‐PDMS‐block‐PBMA) ABA triblock copolymers were synthesized successfully via atom‐transfer radical polymerization using PDMS as macroinitiator. The effects of PDMS content and substrate nature on self‐assembly behaviors of PBMA‐block‐PDMS‐block‐PBMAs were systematically studied using atomic force microscopy. Two series of triblock copolymers with different molecular weights and compositions, i.e. PBMA‐block‐PDMSA12‐block‐PBMAs and PBMA‐block‐PDMSA21‐block‐PBMAs, were used, where the latter were of a higher PDMS content than the former. On silicon wafer, it was found that only spherical structures formed after annealing films spin‐coated from chloroform solutions of PBMA‐block‐PDMSA12‐block‐PBMAs. In contrast, films of PBMA‐block‐PDMSA21‐block‐PBMAs formed semi‐continuous structures. On mica wafer, it was found that ordered cylindrical pores formed after annealing films spin‐coated from chloroform solutions of PBMA‐block‐PDMSA12‐block‐PBMAs. In contrast, films of PBMA‐block‐PDMSA21‐block‐PBMAs formed isolated cylinders or worm‐like morphologies. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
Atactic poly(3‐hydroxybutyrate) (a‐PHB) and block copolymers of poly(ethylene glycol) (PEG) with poly(ε‐caprolactone) (PCL‐b‐PEG) were synthesized through anionic polymerization and coordination polymerization, respectively. As demonstrated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) measurements, both chemosynthesized a‐PHB and biosynthesized isotactic PHB (i‐PHB) are miscible with the PEG segment phase of PCL‐b‐PEGs. However, there is no evidence showing miscibility between both PHBs and the PCL segment phase of the copolymer even though PCL has been block‐copolymerized with PEG. Based on these results, PCL‐b‐PEG was added, as a compatibilizer, to both the PCL/a‐PHB blends and the PCL i‐PHB blends. The blend films were obtained through the evaporation of chloroform solutions of mixed components. Excitingly, the improvement in mechanical properties of PCL/PHB blends was achieved as anticipated initially upon the addition of PCL‐b‐PEG. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2600–2608, 2001  相似文献   

11.
Nonradiative energy transfer method was used to study latex film formation induced by organic solvent vapor. Seven different films with the same latex content were prepared separately from poly(methyl methacrylate) (PMMA) particles and exposed to ethyl benzene, toluene, chloroform, dichloromethane, tetrahydrofuran, and acetone vapor in seven different experiments. Energy‐transfer experiments were carried out between PMMA‐bound naphthalene (N) and pyrene (P) during vapor‐induced film formation. Latex films were prepared from equal amounts of N‐ and P‐labeled latex particles, and steady state spectra of N and P were monitored during film formation. It was observed that the P to N intensity ratio, IP/IN, increased as the vapor exposure time increased. The Prager–Tirrell (PT) model was employed to obtain back‐and‐forth frequencies, ν, of the reptating PMMA chains during latex film formation induced by solvent vapor. ν values were obtained and found to be correlated with the solubility parameter, δ. Polymer interdiffusion obeyed the t1/2 law during film formation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 632–645, 2002; DOI 10.1002/app.10346  相似文献   

12.
New aromatic poly(amide‐imide) films containing isoindoloquinazolinedione unit in the backbone chain were directly obtained by thermal cyclization of the prepolymer of poly(amic acid‐carbonamide) type, i.e., poly(biphenylphthalic dianhydride‐oxydianiline‐4,4′‐diamino‐3′‐carbamoyl‐benzanilide) [poly(BPDA‐ODA‐DACB)]. The films, before heat treatment, exhibited the tensile strength of 30 ≈ 40 MPa and the tensile modulus of 1.3 ≈ 1.9 GPa. After heat treatment, the strength and modulus increased to 135 ≈ 150 MPa and 2.6 ≈ 2.7 GPa, respectively. The films remained transparent throughout the thermal treatment. The cyclized films were much more chemically resistant to alkali than the commercial products such as “Kapton” film and “P84” film, while thermal properties were comparable. The isoindoloquinazolinedione unit induced in the chain backbone on the heat treatment of the films was considered to be a major factor responsible for the superior physical properties of the films. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 118–123, 2000  相似文献   

13.
The miscibility and crystallization behavior of the solution‐blended lightly sulfonated poly(phenylene oxide) (SPPO)/poly(styrene‐co‐4‐vinylpyridine) (PSVP) blend were investigated by conventional and modulated differential scanning calorimetry (MDSC). It was found that the original blend film is actually composed of a crystalline SPPO phase and a noncrystalline compatible SPPO–PSVP phase. The original phase‐segregated structure will evolve to a noncrystalline homogenous structure by subsequent high temperature annealing. The resulting good miscibility was attributed to two aspects: one is that the SPPO crystalline structure could be destroyed as annealing temperature is high enough; the other is that the acid–base interaction between the sulfonic group of SPPO and the pyridine ring of PSVP could promote mixing of different components effectively. And such acid–base interaction was demonstrated by 1C NMR spectra. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2843–2848, 2001  相似文献   

14.
Poly(methyl methacrylate) (PMMA) is known to be immiscible with poly(styrene) (PS) in the bulk state. Poly(ethyl methacrylate) (PEMA), poly(propyl methacrylate) (PPMA), and poly(n‐butyl methacrylate) (PBMA) are also known to be immiscible with PMMA (or PS). Therefore, PMAs (PMMA, PEMA, PPMA, and PBMA) are predicted by the mean field theory to be immiscible with poly(styrene‐b‐methyl methacrylate) (PS‐b‐PMMA) in the bulk state. However, the miscibility of PMAs with PS‐b‐PMMA may be different in the two‐dimensional state. Therefore, the mixed monolayer behavior of PMAs and PS‐b‐PMMA was investigated from the measurements of surface pressure‐area per molecule (π‐A) isotherms at three different temperatures (10°C, 25°C, and 40°C). Calculation of compressibility from isotherms provided the inflection data from maximum and minimum peaks. The miscibility and nonideality of the mixed monolayers were examined by calculating the excess area as a function of composition. Mostly, negative deviations from ideality were observed in the mixed monolayers. This is likely because of favorable interaction between PMMA and PMAs in the monolayer state. The positive deviations occurred at 40°C with PBMA at a high surface pressure. Therefore, with confinement in the two‐dimensional state, the miscibility between PMAs and PS‐b‐PMMA was greatly improved in comparison with the bulk state. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

15.
Water‐soluble urethane acrylate ionomers containing dimethylolpropionic acid (DMPA) were synthesized, changing the molecular components, and their ultraviolet (UV) coating properties were studied. It was found that the UV coating properties of the urethane acrylate ionomer films were very dependent on the molecular weight of the soft segment, the type of the diisocyanate, and the amount of neutralization. In general observations, the cured films displayed much improved mechanical properties, compared with conventional urethane acrylate film not containing ionic groups. The main reason for the improved film properties seemed to be attributed to the presence of ionic groups in the network. In dynamic mechanical analysis, two distinct glass transition temperatures, corresponding to the ionic hard domains and soft domains, were detected at high content of ionic groups. This suggested that the urethane acrylate network be composed of two phases. Consequently, the ionic hard domains formed by the phase separation from crosslinked network could act as a reinforcing filler, which possibly explains the improved film properties of the urethane acrylate ionomer films. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1853–1860, 2000  相似文献   

16.
In this study, poly(n‐butyl methacrylate) (PBMA) was prepared by a suspension polymerization process, and blending with polyacrylonitrile (PAN) in N,N‐dimethyl acetamide to prepare PAN/PBMA blends in various proportions. Hansen's three dimensional solubility parameters of PAN and PBMA were calculated approximately through the contributions of the structural groups. The compatibility in these blend systems was studied with theoretical calculations as well as experimental measurements. Viscometric methods, Fourier transform infrared spectroscopy, dynamic mechanical analysis, scanning electron microscopy, and thermogravimetric analysis were used for this investigation. All the results showed that a partial compatibility existed in PAN/PBMA blend system, which may be due to the intermolecular interactions between the two polymers. And, the adsorption experiment results showed that the addition of PBMA contributed to the enhancing adsorptive properties of blend fibers, which lays the foundation for further studying PAN/PBMA blend fibers with adsorptive function. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
In this study, experimental and numerical studies were performed to investigate the relationship among the functionalization method, weight fraction of MWCNTs, thermal imidization cycle, and mechanical properties of various PAI/MWCNT composite films. Poly(amide‐co‐imide)/multiwalled carbon nanotube composite films were prepared by solution mixing and film casting. The effects of chemical functionalization and weight fraction of multiwalled carbon nanotubes on thermal imidization and mechanical properties were investigated through experimental and numerical studies. The time needed to achieve sufficient thermal imidization was reduced with increasing multiwalled carbon nanotube content when compared with that of a pure poly(amide‐co‐imide) film because multiwalled carbon nanotubes have a higher thermal conductivity than pure poly(amide‐co‐imide) resin. Mechanical properties of pure poly(amide‐co‐imide) and poly(amide‐co‐imide)/multiwalled carbon nanotube composite films were increased with increasing imidization time and were improved significantly in the case of the composite film filled with hydrogen peroxide treated multiwalled carbon nanotubes. Both the tensile strength and strain to failure of the multiwalled carbon nanotube filled poly(amide‐co‐imide) film were increased substantially because multiwalled carbon nanotube dispersion was improved and covalent bonding was formed between multiwalled carbon nanotubes and poly(amide‐co‐imide) molecules. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
Self‐healing paints would have the potential benefit of protecting the underlying substrate and extending the coating's service life. As a step toward those types of coatings, this work examines layer‐by‐layer films of branched poly(ethylene imine)/poly(acrylic acid) with the inclusion of various types of latex particles with different Tg and different compositions. Due to high mobility of the polyelectrolyte chains when plasticized with water, water enabled self‐healing of these films is demonstrated, as well as steam enabled self‐healing. The films with various latex particles show different swelling ratios, surface hydrophilicity, as well as varying ability to self‐heal scratches. This self‐healing property is studied as a function of temperature. Also, the mechanical properties such as hardness and modulus of the films are measured.  相似文献   

19.
The mechanical properties of films prepared from model high‐glass‐transition‐temperature (Tg)/low‐Tg latex blends were investigated with tensile testing and dynamic mechanical analysis. Polystyrene (PS; carboxylated and noncarboxylated) and poly(n‐butyl methacrylate‐co‐n‐butyl acrylate) [P(BMA/BA); noncarboxylated] were used as the model high‐Tg and low‐Tg latexes, respectively. Carboxyl groups were incorporated into the PS latex particles to alter their surface properties. It was found that the presence of carboxyl groups on the high‐Tg latex particles enhanced the Young's moduli and the yield strength of the PS/P(BMA/BA) latex blend films but did not influence ultimate properties, such as the stress at break and maximum elongation. These phenomena could be explained by the maximum packing density of the PS latex particles, the particle–particle interfacial adhesion, and the formation of a “glassy” interphase. The dynamic mechanical properties of the latex blend films were also investigated in terms of the carboxyl group coverage on the PS latex particles; these results confirmed that the carboxyl groups significantly influenced the modulus through the mechanism of a glassy interphase formation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2788–2801, 2002  相似文献   

20.
Films from castor oil‐based polyurethane (PU) prepolymer and nitroguar gum (NGG) with different contents (10–70 wt %) were prepared through solution casting method. The networks of PU crosslinked with 1,4‐butanediol were interpenetrated by linear NGG to form semi‐interpenetrating polymer networks (semi‐IPNs) in the blend films. The miscibility, morphology, and properties of the semi‐IPNs coded as PUNG films were investigated with Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, dynamic mechanical thermal analysis, wide‐angle X‐ray diffraction, density measurement, ultraviolet spectroscopy, thermogravimetric analysis, tensile, and solvent‐resistance testing. The results revealed that the semi‐IPNs films have good miscibility over the entire composition ratio of PU to NGG under study. The occurrence of hydrogen‐bonding interaction between PU and NGG played a key role in improvement of the material performance. Compared with the pure PU film, the PUNG films exhibited higher values of tensile strength (11.7–28.4 MPa). Meanwhile, incorporating NGG into the PU networks led to an improvement of thermal stability and better solvent‐resistance of the resulting materials. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104, 4068–4079, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号