首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The miscibility and crystallization kinetics of the blends of random poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [P(HB‐co‐HV)] copolymer and poly(methyl methacrylate) (PMMA) were investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was found that P(HB‐co‐HV)/PMMA blends were miscible in the melt. Thus the single glass‐transition temperature (Tg) of the blends within the whole composition range suggests that P(HB‐co‐HV) and PMMA were totally miscible for the miscible blends. The equilibrium melting point (T°m) of P(HB‐co‐HV) in the P(HB‐co‐HV)/PMMA blends decreased with increasing PMMA. The T°m depression supports the miscibility of the blends. With respect to the results of crystallization kinetics, it was found that both the spherulitic growth rate and the overall crystallization rate decreased with the addition of PMMA. The kinetics retardation was attributed to the decrease in P(HB‐co‐HV) molecular mobility and dilution of P(HB‐co‐HV) concentration resulting from the addition of PMMA, which has a higher Tg. According to secondary nucleation theory, the kinetics of spherulitic crystallization of P(HB‐co‐HV) in the blends was analyzed in the studied temperature range. The crystallizations of P(HB‐co‐HV) in P(HB‐co‐HV)/PMMA blends were assigned to n = 4, regime III growth process. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3595–3603, 2004  相似文献   

2.
The miscibility and crystallization behavior of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (P(HB‐co‐HV))/poly(vinyl acetate) (PVAc) blends have been investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was found that P(HB‐co‐HV)/PVAc blends were miscible in the melt over the whole compositions. Thus the blend exhibited a single glass transition temperature (Tg), which increased with increasing PVAc composition. The spherulitic morphologies of P(HB‐co‐HV)/PVAc blends indicated that the PVAc was predominantly segregated into P(HB‐co‐HV) interlamellar or interfibrillar regions during P(HB‐co‐HV) crystallization because of the volume‐filled spherulites. As to the crystallization kinetics study, it was found that the overall crystallization and crystal growth rates decreased with the addition of PVAc. The kinetics retardation was primarily attributed to the reduction of chain mobility and dilution of P(HB‐co‐HV) upon mixing with higher Tg PVAc. The overall crystallization rate was predominantly governed by the spherulitic growth rate and promoted by the samples treated with the quenched state because of the higher nucleation density. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 980–988, 2006  相似文献   

3.
Biodegradable polymer blends based on biosourced polymers, namely polylactide (PLA) and poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P(3HB‐co‐4HB)), were prepared by melt compounding. The effects of P(3HB‐co‐4HB) on the miscibility, phase morphology, thermal behavior, mechanical properties, and biodegradability of PLA/P(3HB‐co‐4HB) blends were investigated. The blend was an immiscible system with the P(3HB‐co‐4HB) domains evenly dispersed in the PLA matrix. However, the Tg of P(3HB‐co‐4HB) component in the blends decreased compared with neat P(3HB‐co‐4HB), which might be attributed to that the presence of the phase interface between PLA and P(3HB‐co‐4HB) resulted in enhanced chain mobility near interface. The addition of P(3HB‐co‐4HB) enhanced the cold crystallization of PLA in the blends due to the nucleation enhancement of PLA caused by the enhanced chain mobility near the phase interface between PLA and P(3HB‐co‐4HB) in the immiscible blends. With the increase in P(3HB‐co‐4HB) content, the blends showed decreased tensile strength and modulus; however, the elongation at beak was increased significantly, indicating that the inherent brittlement of PLA was improved by adding P(3HB‐co‐4HB). The interesting aspect was that the biodegradability of PLA is significantly enhanced after blends preparation. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

4.
The phase structure of poly‐(R)‐(3‐hydroxybutyrate) (PHB)/chitosan and poly‐(R)‐(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (P(HB‐co‐HV))/chitosan blends were studied with 1H CRAMPS (combined rotation and multiple pulse spectroscopy). 1H T1 was measured with a modified BR24 sequence that yielded an intensity decay to zero mode rather than the traditional inversion‐recovery mode. 1H T was measured with a 40‐kHz spin‐lock pulse inserted between the initial 90° pulse and the BR24 pulse train. The chemical shift scale is referenced to the methyl group of PHB as 1.27 ppm relative to tetramethylsilane (TMS) based on 1H liquid NMR of PHB. Single exponential T1 decay is observed for the β‐hydrogen of PHB or P(HB‐co‐HV) at 5.4 ppm and for the chitosan at 3.7 ppm. T1 values of the blends are either faster than or intermediate to those of the plain polymers. The T decay of β‐hydrogen is bi‐exponential. The slow T decay component is interpreted as the crystalline phase of PHB or P(HB‐co‐HV). The degree of crystallinity decreases with increasing wt % of chitosan in the blend. The fast T of β‐hydrogen and the T of chitosan in the blends either follow the same trend as or faster than the weight‐averaged values based on the T of the plain polymers. Together with the observation by differential scanning calorimeter (DSC) of a melting point depression and one effective glass transition temperature in the blends, the experimental evidence strongly suggests that chitosan is miscible with either PHB or P(HB‐co‐HV) at all compositions. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1253–1258, 2002  相似文献   

5.
BACKGROUND: The aim of this work is to enhance the production of terpolyester poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate‐co‐4‐hydroxybutyrate) (P(3HB‐co‐3HV‐co‐4HB)) produced by a locally isolated bacterium, Cupriavidus sp. USMAA2‐4. The monomer composition was varied by supplementing different carbon precursors and by manipulating the culture condition through one‐stage cultivation. The effect of C/N ratio and different concentrations of carbon source and precursors were investigated in order to produce higher content of this terpolyester. Although research on this biodegradable polyester is abundant, studies on terpolyester P(3HB‐co‐3HV‐co‐4HB) are still limited. RESULTS: Supplementation of oleic acid in accumulation medium increased the bacterial growth and polyhydroxyalkanoate (PHA) accumulation. It was also shown that medium consisting of assorted carbon precursors at C/N 20 gave relatively high dry cell weight and P(3HB‐co‐3HV‐co‐4HB) content. Various compositions of terpolyester were obtained when the concentration of oleic acid and 4HB precursors were manipulated. The combination of oleic acid with γ‐butyrolactone and 1‐pentanol was found to be the best combination to produce high PHA content (81 wt%). The composition of monomer in P(3HB‐co‐3HV‐co‐4HB) was produced in the range 8–13 mol% for 3HV and 9–24 mol% for 4HB, respectively. CONCLUSIONS: The production of P(3HB‐co‐3HV‐co‐4HB) in shake‐flasks successfully produced 81 wt% of PHA content. This manipulated culture condition can be used at larger scale to provide modeling for the production of terpolyester in a bioreactor. Copyright © 2012 Society of Chemical Industry  相似文献   

6.
The thermal degradation kinetics of poly(3‐hydroxybutyrate) (PHB) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [poly(HB–HV)] under nitrogen was studied by thermogravimetry (TG). The results show that the thermal degradation temperatures (To, Tp, and Tf) increased with an increasing heating rate (B). Poly(HB–HV) was thermally more stable than PHB because its thermal degradation temperatures, To(0), Tp(0), and Tf(0)—determined by extrapolation to B = 0°C/min—increased by 13°C–15°C over those of PHB. The thermal degradation mechanism of PHB and poly(HB–HV) under nitrogen were investigated with TG–FTIR and Py–GC/MS. The results show that the degradation products of PHB are mainly propene, 2‐butenoic acid, propenyl‐2‐butenoate and butyric‐2‐butenoate; whereas, those of poly(HB–HV) are mainly propene, 2‐butenoic acid, 2‐pentenoic acid, propenyl‐2‐butenoate, propenyl‐2‐pentenoate, butyric‐2‐butenoate, pentanoic‐2‐pentenoate, and CO2. The degradation is probably initiated from the chain scission of the ester linkage. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1530–1536, 2003  相似文献   

7.
The miscibility and hydrogen bonding interaction in the poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate)/poly(4‐vinyl phenol) [P(3HB‐co‐3HH)/PVPh] binary blends were investigated by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The DSC results indicate that P(3HB‐co‐3HH) with 20 mol % 3HH unit content is fully miscible with PVPh, and FTIR studies reveal the existence of hydrogen bonding interaction between the carbonyl groups of P(3HB‐co‐3HH) and the hydroxyl groups of PVPh. The effect of blending of PVPh on the mechanical properties of P(3HB‐co‐3HH) were studied by tensile testing. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

8.
Biopolyesters poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) with an 11 mol % 4HB content [P(3HB‐co‐11%‐4HB)] and a 33 mol % 4HB content [P(3HB‐co‐33%‐4HB)] were blended by a solvent‐casting method. The thermal properties were investigated with differential scanning calorimetry. The single glass‐transition temperature of the blends revealed that the two components were miscible when the content of P(3HB‐co‐33%‐4HB) was less than 30% or more than 70 wt %. The blends, however, were immiscible when the P(3HB‐co‐33%‐4HB) content was between 30 and 70%. The miscibility of the blends was also confirmed by scanning electron microscopy morphology observation. In the crystallite structure study, X‐ray diffraction patterns demonstrated that the crystallites of the blends were mainly from poly(3‐hydroxybutyrate) units. With the addition of P(3HB‐co‐33%‐4HB), larger crystallites with lower crystallization degrees were induced. Isothermal crystallization was used to analyze the melting crystallization kinetics. The Avrami exponent was kept around 2; this indicated that the crystallization mode was not affected by the blending. The equilibrium melting temperature decreased from 144 to 140°C for the 80/20 and 70/30 blends P(3HB‐co‐11%‐4HB)/P(3HB‐co‐33%‐4HB). This hinted that the crystallization tendency decreased with a higher P(3HB‐co‐33%‐4HB) content. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Because of high susceptibility to thermal degradation during conventional melt processing of poly(3‐hydroxybutyrate) (P3HB) homopolymer, incorporation of a second or third monomer unit in the polyester backbones is expected to reduce the melting temperature and crystallinity, resulting in a controlled thermal degradation with improved stability. In this work, random poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate‐co‐4‐hydroxyvalerate) (P3HB3HV4HV) terpolyesters biologically synthesized by Cupriavidus necator were investigated for the thermal stability and degradation over a broad temperature range (100–300°C) in comparison with P3HB homopolyester. The work revealed that below the complete melting point (around 150°C), the terpolyester exhibited a high thermal stability and became an amorphous semisolid suitable for conventional thermal processing. Size exclusion chromatography plus nuclear magnetic resonance analysis was used to examine the thermal degradation products and the vulnerability of different monomer units at high temperatures (240–290°C). We found that 3HV unit in P3HB3HV4HV copolymers was more vulnerable to thermal degradation than 3HB unit under air. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41715.  相似文献   

10.
The physical properties of poly(vinyl chloride) (PVC) and poly(N‐isopropylacrylamide) [poly(NIPAAm)] blend systems, and their corresponding graft copolymers such as PVC‐g‐NIPAAm, were investigated in this work. The compatible range for PVC–poly(NIPAAm) blend systems is less than 15 wt % poly(NIPAAm). The water absorbencies for the grafted films increase with increase in graft percentage. The water absorbencies for the blend systems increase with increase in poly(NIPAAm) content within the compatible range for the blends, but the absorbencies decrease when the amount of poly(NIPAAm) is more than the compatible range in the blend system. The tensile strengths for the graft copolymers are larger than the corresponding blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 170–178, 2000  相似文献   

11.
BACKGROUND: Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [P(3HB‐co‐3HV)] co‐polymer has immense potential in the field of environmental and biomedical sciences as biodegradable and biocompatible material. The present study examines a filamentous N2‐fixing cyanobacterium, Nostoc muscorum Agardh as a potent feedstock for P(3HB‐co‐3HV) co‐polymer production and characterization of co‐polymer film for commercial applications. RESULTS: Under photoautotrophic growth conditions, N. muscorum Agardh accumulated the homopolymer of poly‐β‐hydroxybutyrate (PHB), whereas synthesis of P(3HB‐co‐3HV) co‐polymer was detected under propionate‐ and valerate‐supplemented conditions. Exogenous carbons such as acetate, fructose and glucose supplementation with propionate/valerate was found highly stimulatory for the co‐polymer accumulation; the content reached 58–60% of dry cell weight (dcw) under P‐/N‐deficiencies with 0.4% acetate + 0.4% valerate supplementation, the highest value reported so far for P(3HB‐co‐3HV) co‐polymer‐producing cyanobacterial species. The material properties of the films were studied by mechanical tests, surface analysis and differential scanning calorimetry (DSC). CONCLUSION: N. muscorum Agardh, a photoautotrophic N2‐fixing cyanobacterium, emerged as a potent host for production of P(3HB‐co‐3HV) co‐polymer with polymer content 60% of dry cell weight. The material properties of the films were found to be comparable with that of the commercial polymer, thus advocating its potential applications in various fields. Copyright © 2012 Society of Chemical Industry  相似文献   

12.
To modify the mechanical properties of a poly(l ‐lactide) (PLLA)/poly(para‐dioxanone) (PPDO) 85/15 blend, poly(para‐dioxanone‐co‐l ‐lactide) (PDOLLA) was used as a compatibilizer. The 85/15 PLLA/PPDO blends containing 1–5 wt % of the random copolymer PDOLLA were prepared by solution coprecipitation. Then, the thermal, morphological, and mechanical properties of the blends with different contents of PDOLLA were studied via differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and tensile testing, respectively. The DSC result revealed that the addition of PDOLLA into the blends only slightly changed the thermal properties by inhibiting the crystallization degree of the poly(l ‐lactide) in the polymer blends. The SEM photos indicated that the addition of 3 wt % PDOLLA into the blend was ideal for making the interface between the PLLA and PPDO phases unclear. The tensile testing result demonstrated that the mechanical properties of the blends containing 3 wt % PDOLLA were much improved with a tensile strength of 48 MPa and a breaking elongation of 214%. Therefore, we concluded that the morphological and mechanical properties of the PLLA/PPDO 85/15 blends could be tailored by the addition of the PDOLLA as a compatibilizer and that the blend containing a proper content of PDOLLA had the potential to be used as a medical implant material. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41323.  相似文献   

13.
Biodegradable poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) [P(3HB‐co‐4HB)]/silica nanocomposites were prepared by melt compounding. The effects of silica on the morphology, crystallization, thermal stability, mechanical properties, and biodegradability of P(3HB‐co‐4HB) were investigated. The nanoparticles showed a fine and homogeneous dispersion in the P(3HB‐co‐4HB) matrix for silica contents below 5 wt%, whereas some aggregates were detected with further increasing silica content. The addition of silica enhanced the crystallization of P(3HB‐co‐4HB) in the nanocomposites due to the heterogeneous nucleation effect of silica. However, the crystal structure of P(3HB‐co‐4HB) was not modified in the presence of silica. The thermal stability of P(3HB‐co‐4HB) was enhanced by the incorporation of silica. Silica was an effective reinforcing agent for P(3HB‐co‐4HB), and the modulus and tensile strength of the nanocomposites increased, whereas the elongation at break decreased with increasing silica loading. The exciting aspect of this work was that the rate of enzymatic degradation of P(3HB‐co‐4HB) was enhanced significantly after nanocomposites preparation. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

14.
This study was designed to determine whether the surface modifications of the various poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) [P(3HB‐co‐4HB)] copolymer scaffolds fabricated would enhance mouse fibroblast cells (L929) attachment and proliferation. The P(3HB‐co‐4HB) copolymer with a wide range of 4HB monomer composition (16–91 mol %) was synthesized by a local isolate Cupriavidus sp. USMAA1020 by employing the modified two‐stage cultivation and by varying the concentrations of 4HB precursors, namely γ‐butyrolactone and 1,4‐butanediol. Five different processing techniques were used in fabricating the P(3HB‐co‐4HB) copolymer scaffolds such as solvent casting, salt‐leaching, enzyme degradation, combining salt‐leaching with enzyme degradation, and electrospinning. The increase in 4HB composition lowered melting temperatures (Tm) but increased elongation to break. P(3HB‐co‐91 mol % 4HB) exhibited a melting point of 46°C and elongation to break of 380%. The atomic force analysis showed an increase in the average surface roughness as the 4HB monomer composition increased. The mouse fibroblasts (L929) cell attachment was found to increase with high 4HB monomer composition in copolymer scaffolds. These results illustrate the importance of a detailed characterization of surface architecture of scaffolds to provoke specific cellular responses. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
On purpose to examine the effect of branch length on the miscibility of polyolefin blends, miscibility behavior of linear polyethylene/poly(ethylene‐co‐1‐octene) blend was studied and compared to that of linear polyethylene/poly(ethylene‐co‐1‐butene) blend. Miscibility of the blend was determined by observing the morphology quenched from the melt, and by using the relation between interaction parameter and copolymer composition. When the weight composition and molecular weight was the same, poly(ethylene‐co‐1‐octene) was slightly more miscible with linear polyethylene than poly(ethylene‐co‐1‐butene) was. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Biopolymers derived from natural resources are potential alternatives to recalcitrant synthetic plastics; however, studies investigating the degradability of these biopolymers in natural environments are relatively few. This study compares the environmental degradation of polymers described as ‘green plastics’ in garden soil in terms of weight loss, topographical changes and biofilm attachment. Poly(3‐hydroxybutyrate) (PHB) and poly[(3‐hydroxybutyrate)‐co‐(3‐hydroxyvalerate)] (P(HB‐co‐8HV)), (copolymer containing 8 mol% HV) films degraded rapidly, losing 50% of their initial weight in 50 days. In contrast, after burial for 380 days, the medium chain length polyhydroxyoctanoate (PHO) lost 60% of its weight, poly(D ,L ‐lactide) (PDLL) 18% and poly[(D ,L ‐lactide)‐co‐glycolide] (PDLLG) 35%. Polystyrene (PS) and ethyl cellulose (EC) showed no significant degradation. Both weight loss and biofouling occurred in the following sequence: P(HB‐co‐8HV) = PHB > PHO > PDLLG > PDLL > PS = EC. The surface rugosity and surface areas of PHB and P(HB‐co‐8HV) increased three‐ and twofold, respectively, during degradation, indicating surface erosion. The surface rugosity of PHO increased twofold and the surface area increased by 25%. This in situ study demonstrates a quantifiable relationship between biofilm attachment, surface rugosity and polymer degradation. PHB and P(HB‐co‐8HV) showed greater biofouling and increased surface rugosity, and degraded significantly faster than the other polymers studied. Copyright © 2009 Society of Chemical Industry  相似文献   

17.
High tensile strength fibers of poly[(R)‐3‐hydroxybutyrate‐co‐(R)‐3‐hydroxyhexanoate] [P(3HB‐co‐3HH)], a type of microbial polyesters, were processed by one‐step and two‐step cold‐drawn method with intermediate annealing. Thermal degradation behaviors were characterized by differential scanning calorimeter and gel permeation chromatography measurements. Thermal analyses were revealed that molecular weights decreased drastically within melting time at a few minute. One‐step cold‐drawn fiber with drawing ratio of 10 showed tensile strength of 281 MPa, while tensile strength of as‐spun fiber was 78 MPa. When two‐step drawing was applied for P(3HB‐co‐3HH) fibers, the tensile strength was led to 420 MPa. Furthermore, the optimization of intermediate annealing condition leads to enhance the tensile strength at 552 MPa of P(3HB‐co‐3HH) fiber. Wide‐angel X‐ray diffraction measurements of these fibers suggest that the fibers with high tensile strength include much amount of the planer‐zigzag conformation (β‐form) as molecular conformation together with 21 helix conformation (α‐form). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41258.  相似文献   

18.
Copolymerization of acrylonitrile (AN) with p‐trimethylsilylstyrene (TMSS) was carried out at 60°C in bulk and in solution in the presence of 2,2′‐azobisisobutyronitrile (AIBN). The reactivity ratios of AN (M1) and TMSS (M2) were determined to be r1 = 0.068 and r2 = 0.309. The effects of the AIBN concentration and that of the chain transfer agent CCl4 on the molecular weights (MWs) of the copolymers were investigated. An increase in the concentrations of AIBN or CCl4 in solution led to a decrease in MW. Poly(AN‐co‐TMSS‐co‐St) was synthesized in solution using AIBN as the initiator. The molar fraction of AN was 0.415, while the molar ratio of TMSS/St varied from 1 : 1 to 1 : 9. The transition temperatures and thermal and thermooxidative stabilities of poly(AN‐co‐TMSS) and poly(AN‐co‐TMSS‐co‐St) were investigated. The differential scanning calorimeter technique was used to determine the compatibility of the poly(AN‐co‐TMSS) and poly(AN‐co‐TMSS‐co‐St) with commercial poly(AN‐co‐St). All the blends show a single glass transition temperature, which indicates the compatibility of the blend components. The surface film morphology of the blends mentioned above was examined by X‐ray photoelectron spectroscopy. The data obtained indicate that the silicon‐containing copolymer is concentrated in the surface layer. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1920–1928, 2000  相似文献   

19.
Polyhydroxybutyrate (PHB) is a biodegradable bacterial polyester emerging as a viable substitute for synthetic, semicrystalline, nonbiodegradable polymers. An elastomer terpolymer of acrylonitrile‐g‐(ethylene‐co‐propylene‐co‐diene)‐g‐styrene (AES) was blended with PHB in a batch mixer and in a twin‐screw extruder to improve the mechanical properties of PHB. The blends were characterized with differential scanning calorimetry, dynamic mechanical analysis, scanning electron microscopy, and impact resistance measurements. Despite the narrow processing window of PHB, blends with AES could be prepared via the melting of the mixture without significant degradation of PHB. The blends were immiscible and composed of four phases: poly(ethylene‐co‐propylene‐co‐diene), poly(styrene‐co‐acrylonitrile), amorphous PHB, and crystalline PHB. The crystallization of PHB in the blends was influenced by the AES content in different ways, depending on the processing conditions. A blend containing 30 wt % AES presented impact resistance comparable to that of high‐impact polystyrene, and the value was about 190% higher than that of pure PHB. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Poly(L ‐lactide) (PLLA) and poly(3‐hydrobutyrate‐co‐3‐hydroxyvalerate) (PHBV) were blended with poly(butadiene‐co‐acrylonitrile) (NBR). Both PLLA/NBR and PHBV/NBR blends exhibited higher tensile properties as the content of acrylonitrile unit (AN) of NBR increased from 22 to 50 wt %. However, two separate glass transition temperatures (Tg) appeared in PLLA/NBR blends irrespective of the content of NBR, revealing that PLLA was incompatible with NBR. In contrast, a single Tg, which shifted along with the blend composition, was observed for PHBV/NBR50 blends. Moreover NBR50 suppressed the crystallization of PHBV, indicating that PHBV was compatible with NBR50. Decrease of both elongation modulus and stress at maximum load was less significant and increase of elongation at break was more pronounced in PHBV/NBR50 blends than in PLLA/NBR50 blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3508–3513, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号