首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The influence of mechanical shearing on the small deformation properties and microstructure of heat‐induced whey protein gel has been studied. The viscoelastic properties of these gels at different concentrations of 10% and 20% (w/w) exposed to different shear rates of 0, 50, 100, 200 and 500 s?1 during gelation were measured using dynamic oscillatory rheometry. The structure of both the shear treated and unsheared gels was then investigated using light microscopy. The results showed that the storage modulus of the gels at both concentrations was increased by increasing the shear rate exposure during gelation while the shear‐treated gels were more elastic and showed frequency‐independent behaviour. As the total protein concentration of the gel increased, the viscoelastic properties of the gels also increased significantly and the gels showed greater elasticity. The gels obtained from the higher shear rate exposure were stronger with higher elastic moduli at both protein concentrations. Images of the gels obtained using light microscopy showed that shearing resulted in phase separation and some aggregation in the structure of the gels at both concentrations. However, the shearing rates applied in this study were not enough to cause aggregation breakdown in the gel network.  相似文献   

3.
A solution of heat-denatured whey proteins was prepared by heating 10 wt.% whey protein isolate at pH 7.0 to 80°C for 10 min in the absence of salt. This treatment caused the globular protein molecules to partially unfold and aggregate. When the heat-denatured whey protein solution was cooled to room temperature and mixed with 200 mM NaCl it formed a gel. The influence of sucrose (0 to 10 wt.%) in the protein solutions prior to NaCl addition on the gelation rate was investigated. At relatively low concentrations (0–8 wt.%) sucrose decreased the gelation rate, presumably because sucrose increased the aqueous phase viscosity. At higher concentrations (> 8 wt.%) sucrose increased the gelation rate, probably because it decreased the thermodynamic affinity of the globular proteins for the aqueous solution, which increased the attraction between proteins. This data has important implications for the application of cold-setting whey protein ingredients in sweetened food products such as deserts and beverages.  相似文献   

4.
5.
Heat‐denatured whey‐protein isolate (HD‐WPI) solutions were prepared by heating a 10 wt% WPI solution (pH 7) to 80 °C for 10 min and then cooling it back to 30 °C. Cold‐set gelation was initiated by adding either NaCl (0 to 400 mM) or CaCl2 (0 to 15 mM). Both salts increased the turbidity and rigidity of the HD‐WPI solutions. Gelation rate and final gel strength increased with salt concentration and were greater for CaCl2 than NaCl at the same concentration because the former is more effective at screening electrostatic interactions and can form salt bridges.  相似文献   

6.
The effects of protein concentration and locust bean gum (LBG) addition on the mechanical properties, microstructure and water holding capacity of acidified soy protein (SPI) gels were studied. The protein was employed in two different states: (i) native and (ii) heat denatured. A slow acidification rate was induced in both systems by applying glucono‐δ‐lactone (GDL). The results indicated that the gels of native SPI were weaker, less deformable and showed lower water holding capacity than the gels of heat‐denatured SPI. The LBG addition led to an increase in the strength and water holding capacity of SPI gels, independent of the protein state (native or denatured). These results indicated that the properties of texture and water holding capacity of the SPI acid gels can be modulated by the process conditions or by the addition of other ingredients, such as polysaccharides.  相似文献   

7.
An existing procedure for the alteration of whey proteins into a cold‐set thickening agent was modified by developing a spray‐drying operation to replace the prohibitively expensive freeze‐drying step. The original and the modified derivatization procedures were used with a commercial whey protein concentrate (WPC). The freeze‐dried and spray‐dried derivatized WPC powders, along with polysaccharide thickeners, were reconstituted in water and evaluated by using a range of rheological studies. The effects of temperature, concentration, and shear on viscosity as well as the mechanical spectra were assessed to characterize the ability of the powders to function in food systems. Rheological characterization revealed the modified derivatization procedure yielded an ingredient having the same cold‐set thickening and gelling ability as the original derivatized powder. The modified whey proteins were also able to achieve, at higher usage levels, textural properties similar to several polysaccharide thickeners. Use of a spray‐drying technique created a more economical process for the production of a whey protein ingredient that was suitable for contributing viscosity and texture to a wide range of food systems.  相似文献   

8.
9.
蛋白质-多糖凝胶具有良好的稳定性和机械强度,在稳定和传递生物活性物质、营养强化剂方面的应用前景广阔。该研究以乳清分离蛋白、高酰基结冷胶为原料制备热诱导混合凝胶,分析高酰基结冷胶对乳清分离蛋白-高酰基结冷胶混合凝胶的凝胶强度、保水性及显微结构等,揭示乳清蛋白-高酰基结冷胶凝胶形成机理。结果表明,高酰基结冷胶促使蛋白质巯基暴露从而使凝胶形成稳定结构,提高混合凝胶的凝胶强度和保水性,且随着高酰基结冷胶含量增加而显著增大,其质量浓度为4 g/L时,复合凝胶的凝胶强度最大,为26.97 g;保水性最好,为97.41%;透光率最低,为1.87%。温度扫描结果表明,增加高酰基结冷胶可以提高乳清分离蛋白的相转变温度,傅里叶红外光谱显示,乳清分离蛋白与高酰基结冷胶存在分子间作用力,扫描电子显微镜表明高酰基结冷胶诱导混合凝胶形成结构紧密的三维网络结构。该研究为拓展乳清分离蛋白和结冷胶的新型凝胶食品,提高传统食品的质量,改善食品的加工工艺提供基础理论数据。  相似文献   

10.
改性对大豆分离蛋白凝胶性的影响   总被引:1,自引:0,他引:1  
介绍了物理改性、化学改性、酶改性、基因工程改性等改性方法对大豆分离蛋白凝胶性的影响,并对此方面的研究趋势进行了预测.  相似文献   

11.
Summary Thermally induced gelation of commercial whey protein samples from the Molecular Basis of the Aggregation, Denaturation, Gelation and Surface Activity of Whey Proteins ( MADGELAS ) survey has been studied in order to develop a current status report on their rheological properties. Solutions of 10% protein (w/v) were prepared in distilled water, 200 mm NaCl or 10 mm CaCl2 at neutral pH. Small-scale deformation of the samples was measured by dynamic oscillatory rheometry using a Bohlin CS Rheometer. Large-scale deformation at penetration mode was measured using a Texture Analyser (Stable Micro Systems, Surrey, UK). For solutions containing salts, there was a general trend for gel point to decrease and G' values to increase, the effect being more marked in the presence of NaCl. Similarly, force values at failure also tended to increase in the presence of salts. Results obtained with samples of similar protein composition dissolved in water were highly scattered, these differences being reduced in the presence of added salts.  相似文献   

12.
The effect of fortifying reconstituted skim milk with increasing levels of the β-lactoglobulin (β-LG) genetic variants A, B, and an A-B mixture on rennet-induced gelation was studied by small deformation-sensitive rheology. Free-zone capillary electrophoresis and high-sensitivity oscillatory rheology were used to elucidate the role of potential heterotypic associative interactions between whey proteins and casein in a mixed colloidal system, subjected to moderate heating (65°C for 30 min) prior to renneting, on the gelling properties of the system. Increasing levels of added whey protein, in the concentration range of 0.225 to 1.35% of added protein, led to a concomitant progressive increase in the equilibrium shear storage modulus, G′ (recorded after ∼10,800 s), in the order β-LG B > β-LG A and β-LG A-B, as the general expected consequence of the setup of denser casein gel networks. The preferential effect of β-LG B over β-LG A on the mechanical strength of the gels may be due to the formation of cross-links and aggregates involving whey proteins and rennet hydrolysis products or an increase in the size of the casein micelle caused by the grafting of β-LG B to its surface, or both. The results of free-zone capillary electrophoresis were consistent with the notion that β-LG B (and not β-LG A) binds to the casein micelle under an optimal stoichiometry of 1:0.045 (mg/mg), even in the absence of heat treatment. The liquid-like character of the gel networks formed, tan δ, was a parameter sensitive to the level of addition of β-LG A in particular. At low concentrations (up to 0.45%) of β-LG A, tan δ increased by almost twice as much, which was interpreted as a result of the increase in the loss modulus, G″, of the sol fraction because of the presence of unbound β-LG A. At greater incremental concentrations of β-LG (>0.45%), the formation of smaller whey protein aggregates confined to the sol fraction may have led to a progressive decrease in tan δ. The critical gel time, tgel, was also affected by the concentration of added whey protein and described 3 zones of behavior, irrespective of the type of whey protein variant. The critical gel time was slightly shorter for β-LG B than for β-LG A at 0.45% of added whey protein, but this difference became larger at 0.67%. Even when only β-LG B was found to associate with casein prior to renneting, both β-LG A and β-LG B, either alone or mixed, had a profound influence on the mechanical strength and coagulation kinetics of the rennet-induced casein gels. This knowledge is expected to be useful to exert better control and optimize processing conditions during the manufacturing of cheese and cheese analogs.  相似文献   

13.
14.
Heat-denatured whey protein solutions are used to make ingredients that gel at low temperatures. This study examines the influence of holding temperature (65 to 90°C), holding time (5 to 30 min), protein concentration (2 to 12 wt%) and pH (3 to 8) on the rheology and appearance of heat-denatured whey protein solutions. The optimum preparation conditions required to produce non-gelled transparent solutions of heat-denatured proteins were established. The rate of cold-gelation after the addition of 200 mM NaCl to the heat-denatured whey protein solutions increased as their initial viscosity increased. It was possible to produce gels with different cold-gelling characteristics by altering the thermal preparation conditions.  相似文献   

15.
Hydrolyzed whey protein isolate (WPI) is used in the food industry for protein enrichment and modification of functional properties. The purpose of the study was to determine the feasibility of subcritical water hydrolysis (SWH) on WPI and to determine the temperature and reaction time effects on the degree of hydrolysis (DH) and the production of peptides and free amino acids (AAs). Effects of temperature (150 to 320 °C) and time (0 to 20 min) were initially studied with a central composite rotatable design followed by a completely randomized factorial design with temperature (250 and 300 °C) and time (0 to 50 min) as factors. SWH was conducted in an electrically heated, 100-mL batch, high pressure vessel. The DH was determined by a spectrophotometric method after derivatization. The peptide molecular weights (MWs) were analyzed by gel electrophoresis and mass spectrometry, and AAs were quantified by high-performance liquid chromotography. An interaction of temperature and time significantly affected the DH and AA concentration. As the DH increased, the accumulation of lower MW peptides also increased following SWH (and above 10% DH, the majority of peptides were <1000 Da). Hydrolysis at 300 °C for 40 min generated the highest total AA concentration, especially of lysine (8.894 mg/g WPI). Therefore, WPI was successfully hydrolyzed by subcritical water, and with adjustment of treatment parameters there is reasonable control of the end-products.  相似文献   

16.
Whey protein nanoparticles (NPs) were prepared by heat‐induced method. The influences of whey protein isolates (WPIs) and concentrates (WPCs) on the formation of NPs were first investigated. Then Pickering emulsions were produced by protein NPs and their properties were evaluated. After heat treatment, WPC NPs showed larger particle size, higher stability against NaCl, lower negative charge and contact angle between air and water. Dispersions of WPC NPs appeared as higher turbidity and viscosity than those of WPI NPs. The interfacial tension of WPC NPs (~7.9 mN/m at 3 wt% NPs) was greatly lower than that of WPI NPs (~12.1 mN/m at 3 wt% NPs). WPC NPs‐stabilised emulsions had smaller particle size and were more homogeneous than WPI NPs‐stabilised emulsions. WPC NPs‐stabilised emulsions had higher stability against NaCl, pH and coalescence during storage.  相似文献   

17.
The goal of this work has been to assess the influence of a health-promoting hydrocolloid, such as kefiran, in oil-in-water emulsions (O/W: 50/50) containing whey protein isolate (1.0% wt.). Different kefiran concentration levels (0%, 0.25%, 0.5%, 1% wt.) were studied, observing a shift from a fluid-like to a solid-like behaviour and higher viscosities when kefiran content increased. A pseudoplastic behaviour was detected for all systems studied. The observed evolution is attributed to the thickening effect exerted by kefiran, which promoted stability, in spite of observing a certain flocculation degree within the emulsion systems, demonstrated through the addition of sodium dodecyl sulphate (1% wt.). Furthermore, short-term stability of these pseudoplastic emulsions has been verified by laser-scattering techniques. Thus, a Sauter diameter around 1 µm remained unaltered up to 7 days since preparation. The addition of kefiran in the formulation would benefit from their well-known health-promoting effects.  相似文献   

18.
We investigated the effects of different concentrations of whey protein isolate (WPI) on oat starch characteristics in terms of pasting, thermal, and structural properties. The pasting properties of the starch showed that hot paste viscosity increased with the addition of WPI in the system, and relative breakdown decreased. Thermal analysis showed a significant effect of WPI on oat starch by increasing the peak temperature of differential scanning calorimeter endotherms. The X-ray diffraction and Fourier transform infrared spectroscopy studies revealed that WPI increased the ordered structuration of starch paste, as evident by an increase in relative crystallinity; in addition, a decrease in infrared bands at 1,024 cm?1 and 1,080 cm?1 suggested decreased gelatinization of oat starch granules. Overall, WPI at different concentrations affected the oat starch gelatinization properties.  相似文献   

19.
Cold‐set whey protein isolate (WPI) gels formed by sodium or calcium chloride diffusion through dialysis membranes were evaluated by mechanical properties, water‐holding capacity and microscopy. The increase of WPI concentration led to a decrease of porosity of the gels and to an increase of hardness, elasticity and water‐holding capacity for both systems (CaCl2 and NaCl). WPI gels formed by calcium chloride addition were harder, more elastic and opaque, but less deformable and with decreased ability to hold water in relation to sodium gels. The non linear part of stress–strain data was evaluated by the Blatz, Sharda, and Tschoegl equation and cold‐set gels induced by calcium and sodium chloride addition showed strain‐weakening and strain‐hardening behaviour, respectively. The fractal structure of the gels indicated a weak‐link behaviour. For WPI gels results suggest intrafloc links, formed at heating step, which were more rigid than the interfloc links, promoted by salt addition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号