首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈曦  马小丰  李建华 《塑料工业》2020,48(4):153-156
用双螺杆共混挤出法制备了不同比例的聚四氟乙烯(PTFE)纤维改性聚甲醛(POM),考察了PTFE纤维含量对POM摩擦磨损性能、力学性能和热稳定性的影响。在POM/PTFE耐磨体系中,创新性地引入聚氧化乙烯(PEO)作为相容剂,制备出耐磨性能和韧性俱佳的POM改性材料。对POM改性材料进行了耐磨性和力学性能分析,利用偏光显微镜进一步证实了PEO能促进PTFE纤维和POM的相容性。结果表明,随着PTFE纤维含量的增加,POM的摩擦磨损性能有所提高,但力学性能不理想。在8%PTFE+92%POM体系中引入PEO,改性材料的摩擦因数低至0.169,缺口冲击强度比POM提高了173%,得到了耐磨和增韧效果显著的POM改性材料。  相似文献   

2.
POM/改性PTFE合金的研究   总被引:4,自引:1,他引:3  
对POM/改性PTFE合金的力学性能、摩擦磨损性能和加工性能进行了研究。结果表明,POM/改改PTFE共混合金综合了POM和PTFE的优点,减摩耐磨性良,尺寸稳定性、耐热性好,是一种理想的自润滑材料。  相似文献   

3.
Polyoxymethylene (POM) composites modified with nanoparticles, polytetrafluoroethylene (PTFE) and MoS2 were prepared by a twin‐screw extruder. The effect of nanoparticles and solid lubricant PTFE/MoS2 on mechanical and tribological properties of the composites were studied. Tribological tests were conducted on an Amsler friction and wear tester using a block‐on‐ring arrangement under dry sliding and oil lubricated conditions, respectively. The results showed that generally speaking POM nanocomposites had better stiffness and tribological properties than corresponding POM composites attributed to the high surface energy of nanoparticles, except that the tensile strength of three composites and dry‐sliding tribological properties of POM/3%Al2O3 nanocomposite decreased due to the agglomeration of nanoparticles. Tribological properties differed under dry sliding and oil lubricated conditions. The friction coefficient and wear volume of POM nanocomposites under oil lubricated condition decreased significantly. The increased deformation resistance supported the increased wear resistance of POM nanocomposites. POM/PTFE/MoS2/3%Al2O3 nanocomposite had the best mechanical and tribological properties of all three composites, which was attributed to the synergistic effect of nanoparticles and PTFE/MoS2. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

4.
The wear rate and coefficient of friction for graphite flake (GF)‐filled polytetrafluoroethylene (PTFE) composites were evaluated on a pin‐on‐disk wear tester under dry conditions. Scanning electron microscopy showed significant reduction in the abrasive wear of the composites. The wear rates of 5 and 10 wt % GF composites were reduced by more than 22 and 245 times, respectively, at sliding speed of 1 m/s. With increasing sliding distance from 1 to 8 km, the wear rate of pure PTFE decreased by 1.4 times whereas that of composites, it decreased up to three times. The significant decreased in wear rate and coefficient of friction might be attributed to the formation of a thin and tenacious transfer film on the counter‐surface. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
In this work, perfluoroalkylmethacrylate ester (PFAMAE)‐grafted‐linear low‐density polyethylene (LLDPE) was synthesized by UV‐induced surface graft polymerization. The effect of PFAMAE‐grafted‐LLDPE on the tribological behavior of LLDPE‐filled polyoxymethylene (POM) composite was investigated using a friction and abrasion testing machine. The results showed that LLDPE‐g‐PFAMAE was a more effective modifier in improving tribological property of LLDPE‐filled POM composite than conventional maleic anhydride‐grafted‐polyethylene (PE‐g‐MAH). POM/LLDPE composite possessed much lower friction coefficient but higher wear rate than pristine POM. The incorporation of LLDPE‐g‐PFAMAE into POM/LLDPE further decreased the friction coefficient, which was 45% lower than that of POM. The wear rate of POM/LLDPE/LLDPE‐g‐PFAMAE composite was also reduced and was lower than that of pristine POM. The primary wear mechanisms of POM/LLDPE composite with and without LLDPE‐g‐PFAMAE were adhesive and abrasive wear. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

6.
聚四氟乙烯填充聚醚醚酮及其复合材料的研究   总被引:4,自引:0,他引:4  
利用熔融共混工艺制备了PEEK/PTFE共混物及其复合材料,研究了PTFE对PEEK共混物及其复合材料力学性能和耐磨性的影响,结果表明,PEEK经10% ̄PTFE填充改性,玻纤/碳纤混杂增强后,由于磨损方式的改变,使该复合材料不仅保持了良好的物理力学性能,而且具有较低的摩擦系数,耐磨性也得到明显改善。  相似文献   

7.
不同介质中聚四氟乙烯复合材料的摩擦磨损性能   总被引:1,自引:0,他引:1       下载免费PDF全文
汪怀远  冯新  史以俊  何鹏  陆小华 《化工学报》2007,58(4):1053-1058
分别在碱液、水、油和干摩擦条件下考察了碳纤维和玻璃纤维填充聚四氟乙烯复合材料的摩擦磨损性能。利用SEM观察了不同介质中磨损面和对摩面的形貌,并探讨了其磨损机理。结果表明,不同介质中摩擦系数的大小关系是μ干>μ水或油>μ碱,磨损率是W水>W干>W碱或油。水、碱和油都不同程度地阻止了转移膜的形成。碱液和油具有很好的冷却与润滑作用,摩擦系数低,磨损小;然而水分子降低了填料和基体的界面粘接强度,造成犁削和磨粒磨损加重。  相似文献   

8.
利用冷压烧结法制备了不同含量的聚四氟乙烯/纳米碳化硅(PTFE/纳米SiC)复合材料。采用MM-200型摩擦磨损试验机在干摩擦条件下考察了纳米SiC含量及载荷对PTFE/纳米SiC复合材料摩擦磨损性能的影响,借助于扫描电子显微镜观察分析了试样磨损表面形貌,并探讨了其磨损机理。结果表明,纳米SiC能够提高PTFE/纳米SiC复合材料的硬度和耐磨性,当纳米SiC质量分数为7%时,PTFE/纳米SiC复合材料的磨损量最小,摩擦系数也最小;随纳米SiC含量的增加,其摩擦系数有所增大;随着载荷的增大,PTFE/纳米SiC复合材料的磨损量增加。  相似文献   

9.
Five kinds of polytetrafluoroethylene (PTFE)‐based composites, pure PTFE, PTFE + 30(v)% MoS2, PTFE + 30(v)% PbS, PTFE + 30(v)% CuS, and PTFE + 30(v)% graphite (GR) composites, were first prepared. Then the friction and wear properties of these PTFE composites, sliding against GCr15‐bearing steel under both dry and liquid paraffin‐lubricated conditions, were studied by using an MHK‐500 ring‐on‐block wear tester. Finally, the worn surfaces and the transfer films of the PTFE composites formed on the surface of GCr15 bearing steel were investigated by using a scanning electron microscope (SEM) and an optical microscope, respectively. Experimental results show that filling with MoS2, PbS, CuS, or graphite to PTFE can reduce the wear of the PTFE composites by two orders of magnitude compared to that of pure PTFE under dry friction conditions. However, the friction and wear‐reducing properties of these PTFE composites can be greatly improved by lubrication with liquid paraffin. Investigations of transfer films show that MoS2, PbS, CuS, and graphite promote the transfer of the PTFE composites onto the surface of GCr15‐bearing steel under dry friction conditions, but the transfer of the PTFE composites onto the surface of GCr15‐bearing steel can be greatly reduced by lubrication with liquid paraffin. SEM examinations of worn surfaces show that with lubrication of liquid paraffin, the creation and development of the cracks occurred on the worn surfaces of the PTFE composites under load, which reduces the load‐supporting capacity of the PTFE composites. This would lead to the deterioration of the friction and wear properties of the PTFE composites under higher loads (>600N). © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 751–761, 1999  相似文献   

10.
Four kinds of polytetrafluoroethylene (PTFE)-based composites, such as pure PTFE, PTFE + 30(vol.)% carbon fiber, PTFE + 30(vol.)% glass fiber, and PTFE + 30(vol.)% K2Ti6O13 whisker composite, were prepared. The friction and wear properties of these fiber- and whisker-reinforced PTFE composites sliding against GCr15-bearing steel (SAE52100 steel) under both dry and liquid paraffin lubricated conditions were studied by using an MHK-500 ring-block wear tester (Timken wear tester). Then the worn surfaces of these PTFE composites and the transfer films formed on the surface of GCr15-bearing steel were investigated by using a Scanning Electron Microscope (SEM) and an Optical Microscope, respectively. Experimental results show that the friction and wear properties of the PTFE composites reinforced with carbon fiber, glass fiber, and a K2Ti6O13 whisker can be greatly improved by lubrication with liquid paraffin, and the friction coefficients of these PTFE composites can be decreased by one order of magnitude compared to those under dry friction conditions. Meanwhile, the wear of the fiber- and whisker-reinforced PTFE composites in liquid paraffin lubrication increases with the increase of load, but the friction coefficients of these PTFE composites first decrease with the increase of load, and then increase with the increase of load. The variations of friction coefficients with load for these PTFE composites in liquid paraffin lubrication can be described properly by the Stribeck's curve as given in this article. However, when the load increases to the load limits of the PTFE composites, their friction and wear increase sharply. SEM and optical microscope investigations show that the interactions between liquid paraffin and the PTFE composites, especially the absorption of liquid paraffin into the surface layers of the PTFE composites, create some obvious cracks on the worn surfaces of the PTFE composites. The creation and the development of the cracks reduce the load-carrying capacity of the PTFE composites, and therefore lead to the increase of the friction and wear of the PTFE composites under higher loads. Meanwhile, the transfer of the fiber- and whisker-reinforced PTFE composites onto the counterfaces can be greatly reduced by lubrication with liquid paraffin, but the transfer still takes place. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1393–1402, 1998  相似文献   

11.
PTFE/BaSO4复合材料摩擦磨损性能研究   总被引:1,自引:0,他引:1  
用M-2000型摩擦磨损试验机研究了干摩擦条件下BaSO4用量,载荷,对磨时间对聚四氟乙烯(PTFE)复合材料摩擦磨损性能的影响。在本实验条件下,PTFE/BaSO4复合材料的摩擦系灵敏随着BaSO4含量的增加而增大,抗磨损能力则有一个最佳含量;随着载荷的增加,材料的摩擦系数,磨损量和磨痕宽度也随之增大,磨损量随着对磨时间的延长而波动变小并趋于稳定。  相似文献   

12.
汪怀远  朱艳吉  冯新  陆小华 《化工学报》2009,60(7):1812-1817
分别研究了不同含量钛酸钾晶须(PTW)、碳纤(CF)填充聚四氟乙烯(PTFE)复合材料在硫酸溶液中和干摩擦条件下摩擦学性能以及酸中的耐蚀性能,借助SEM等分析探讨了相关机理。结果表明,酸中纯PTFE耐磨性较干摩擦条件下提高了2个数量级,摩擦系数也只有干摩擦的15.3%。与CF/PTFE相比,PTW/PTFE复合材料在酸中显示更好的耐蚀和耐磨性能。PTW可以进一步提高PTFE酸中耐磨性能、降低摩擦系数。含15%(质量)PTW时复合材料具有最低的磨损率,此时比纯PTFE酸中耐磨性提高13.8倍,是相同含量CF/PTFE耐磨性的3.2倍。由于酸溶液的冷却和润滑作用,复合材料的摩擦系数与干条件相比明显降低。然而,酸溶液阻止了转移膜的形成。不管是干摩擦还是在酸性溶液中,当填料含量超过15%(质量)时,犁削和磨粒磨损是PTFE复合材料的主要磨损机理。  相似文献   

13.
The carbon fibers have been exposed to nitric acid oxidation treatments and introduced into polyoxymethylene composites (POM/CF). The nitric acid treatment increases the number of the flaws, roughness of the surface, and disorder of carbon atoms on fiber, as well as introduces reactive functional groups, which could lead to a better mechanical bonding between fiber and the matrix. It is shown that the impact strength and fiber‐matrix adhesion in composites (POM/mCF) are superior to those for POM/CF composites. Simultaneously, the addition of mCF improves flexural strength and modulus relative to virgin POM significantly. Average friction coefficient values of POM/CF composites are lower than that of POM/mCF composites. As the percentage of fiber increases, the trend of wear ratio of the composites goes down initially and bumps up afterwards. The results indicate that the proper contents of CF and mCF in composites range from 5 wt % to 20 wt %. Scanning electron microscopy of worn surface morphology has revealed that the main wear mechanism of the composites were adhesive wear and ploughing wear. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41812.  相似文献   

14.
Polytetrafluoroethylene (PTFE) composites filled with PTFE waste offer interesting combination of tribological properties and low cost. PTFE composites waste was mechanically cut and sieved into powders. PTFE composites filled with PTFE waste powders were prepared by compression molding. Friction and wear experiments were carried out in a reciprocating sliding tribotester at a reciprocating frequency of 1.0 Hz, a contact pressure of 5.5 MPa, and a relative humidity of (60 ± 5)%. PTFE materials slid against a 45 carbon steel track. Results showed that a PTFE composite (B) filled with 20 wt % PTFE waste exhibited a coefficient of steady‐state friction slightly higher than that of unfilled PTFE (A), while wear resistance over two orders of magnitude higher than that of unfilled PTFE (A). Another PTFE composite filled with PTFE waste and alumina nanoparticles exhibited the highest wear resistance among the three PTFE materials. This behavior originates from the effective reinforcement of PTFE waste as a filler. It was experimentally confirmed that the low cost recycling of PTFE waste without by‐products is feasible. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1035–1041, 2007  相似文献   

15.
Two types of representative nanometer materials, i.e., fibroid nanometer attapulgite and approximate spherical ultrafine diamond, were selected as fillers of polytetrafluoroethylene (PTFE) to study the mechanism of the wear‐reducing actions of the fillers in PTFE composites. The friction and wear tests were performed on a block‐on‐ring wear tester under dry sliding conditions. Differential scanning calorimetry (DSC) was used to investigate material microstructure and to examine modes of failure. No significant change in coefficient of friction was found, but the wear rate of PTFE composites was orders of magnitude less than that of pure PTFE. DSC analysis revealed that nanometer attapulgite and ultrafine diamond played a heterogeneous nucleation role in PTFE matrix and consequently resulted in increasing the crystallinity of PTFE composites. Moreover, the PTFE composite with higher heat absorption capacity and crystallinity exhibited improved wear resistance. A propositional “sea‐frusta” frictional model explained the wear mechanism of filler action in reducing the wear of PTFE polymer, i.e., fillers in the PTFE matrix effectively reduced the size of frictional broken units for PTFE composites and restrained the flowability of the units, as well as supporting the applied load. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

16.
纳米TiO2/PTFE复合材料的干摩擦磨损性能   总被引:2,自引:0,他引:2  
史丽萍 《塑料工业》2005,33(1):49-51
利用磨损试验机、扫描电子显微镜等方法研究了表面处理与未处理纳米TiO2(质量分数为6%)填充聚四氟乙烯(PTFE)复合材料的干摩擦性能。结果表明,纳米TiO2能明显提高:PTFE耐磨性并改变其磨屑形成机理。表面处理纳米TiO2在PTFE中能较均匀分散。纳米TiO2填充PTFE复合材料的摩擦系数比PTFE稍大,纳米TiO2表面处理与否对PTFE复合材料的摩擦系数影响不大,但表面处理纳米TiO2填充聚四氟乙烯耐磨性比PTFE有显著提高,表面处理与表面未处理纳米TiO2填充PTFE复合材料的耐磨性比PTFE可分别提高7倍和3倍左右。导致PTFE磨损的重要机理是粘着磨损。  相似文献   

17.
The tribological, mechanical, and thermal properties of carbon series additions reinforced CF/PTFE composites at high speed were investigated. In this work, carbon fiber (CF) filled polytetrafluoroethylene (PTFE) composites, which have excellent tribological properties under normal sliding speed (1.4 m/s), were filled with some carbon materials [graphene (GE), carbon nanotubes (CNTs) and graphite (Gr)] respectively to investigate the tribological properties of CF/PTFE composites at high sliding speed (2.1 and 2.5 m/s). The results reveal that the carbon series additions can improve the friction and anti‐wear performances of CF/PTFE, and GE is the most effective filler. The wear rate of 0.8 wt % GE/CF/PTFE was decreased by 50 ? 55%, 55 ? 60%, 40 ? 45% at 1.4, 2.1, and 2.5 m/s compared with CF/PTFE. SEM study shows GE could be helpful to form smooth and continuous transfer film on the surface of counterparts. Meanwhile, GE can improve its tensile strength and elastic modulus obviously. Thin layer structure of GE could enhance the thermal conductivity, which can be helpful to dissipate heat of CF/PTFE composites wear surface. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43236.  相似文献   

18.
The composites of polytetrafluoroethylene (PTFE) filled with expanded graphite (EG), poly(p‐oxybenzoyl) (POB), and basalt fiber (BF) were prepared by heating compression and sintering molding. The tribological behavior of PTFE composites was investigated with a pin‐on‐disk tester under dry conditions and seawater lubrication. The worn surface of PTFE composites and the transfer film on the counterface were observed with a scanning electron microscope. The results indicated that the incorporation of EG and POB improved the hardness of PTFE composites, and addition of BF led to greater load‐carrying capacity. Compared to pure PTFE, the coefficients of friction of PTFE composites slightly increased, but the wear rates were significantly reduced (the wear rate of composite with 3% EG being only 10.38% of pure PTFE). In addition, all the composites exhibited a lower coefficient of friction (decreases of about 0.03–0.07) but more serious wear under seawater lubrication than under dry sliding. The wear mechanism changed from serious abrasive wear of pure PTFE to slight adhesion wear of PTFE composites under both conditions. A transfer film was obviously found on the counterface in seawater, but it was not observed under dry conditions. Among all the materials tested, the PTFE‐based composite containing 20% POB (mass fraction), 2% EG, and 3% BF exhibited the best comprehensive performance. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2523–2531, 2013  相似文献   

19.
The friction and wear properties of polyoxymethylene/linear low‐density polyethylene/ethylene‐acrylic acid (POM/LLDPE/EAA) blends are investigated on a MM‐200 wear tester. The results show that the addition of LLDPE and EAA obviously improves the friction and wear properties of POM. The friction coefficient and wear scar width of POM/LLDPE/EAA blends are much lower than those of pure POM. SEM analysis reveals that POM appears to wear by thermal softening and melting of worn surface when sliding against the stainless steel, while no severe damage but wear debris can be observed on the worn face of POM/LLDPE/EAA blend. Long‐time sliding causes the removal of molten POM from the worn surface, while the formation of the lubricated layer occurs on the worn surface for POM/LLDPE/EAA blend. DSC analysis shows that the melting temperature and the crystallinity of the worn surface for POM are improved after a long‐time sliding. Molecular orientation on the worn surface of POM is affirmed by WAXD. For POM/LLDPE/EAA blend, the improvement of the friction and wear properties is mainly owed to wear debris and lubricant layer existing between the contact surfaces. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 48–53, 2006  相似文献   

20.
Ar等离子体改性PTFE膜接枝丙烯酸研究   总被引:1,自引:0,他引:1  
研究利用Ar等离子体为引发手段对聚四氟乙烯(PTFE)膜进行表面处理,最终实现在PTFE膜表面接枝丙烯酸.通过XPS和ATR-FTIR对改性膜的表面进行表征,表明在PTFE膜的表面形成一层聚丙烯酸(pAAc)薄膜.PTFE-g-pAAc膜的表面亲水性及其表面稳定性比等离子改性PTFE膜(PTFE modified by plasma)具有较大的改善,克服了等离子体改性效果不稳定的缺点.本研究拓展了PTFE膜材料在其他各相关领域的应用,对其他高分子材料也有一定的借鉴意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号