首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以杉木屑为原料,CO2为气化剂,熔融碳酸盐Li2CO3-Na2CO3-K2CO3(LNK)为热介质和催化剂进行气化制合成气(H2+CO)的研究,考察气化剂CO2流量、CO2通入方式、复合熔盐体系中添加的金属氧化物种类和Cr2O3含量等因素对气体产物组成分布及产率的影响。结果表明:CO2流量显著影响气化反应的平衡;以鼓泡法通入CO2时生物质的气化效果优于吹扫法的情况,CO2流量为99.8 L/h时气化效果较好,合成气含量和产率分别达到61.4%和350.2 mL/g生物质;添加的金属氧化物中Cr2O3对生物质气化过程的促进作用优于MgO和Fe2O3,随着Cr2O3含量的增大,合成气含量先增大后略微减小,在Cr2O3含量为10.0%时最高,为67.9%。  相似文献   

2.
以木屑和稻壳为试验原料,针对生物质气化热解技术开展研究。实验结果表明,CO、H2、CH4等是组成合成气的主要有效成分;反应终温对气化热解反应的结果影响较大。当反应终温从700℃上升至900℃时,合成气产率提升了39. 6%;原料含水率对合成气的组分构成也有影响,含水率越高,H2占比越小,同时无效热值气体CO2含量占比上升。  相似文献   

3.
碱金属热解预处理是一种控制高碱煤燃烧灰问题的新思路,结合实验室煤炭分级转化多联产系统的实际热解气氛,利用水平管式炉对准东大成煤进行N2、H2、CH4、CO2及煤气气氛热解实验,探究热解气氛对钠迁移转化的影响。结果表明:与N2气氛相比,多联产气氛热解时钠释放量显著增加,发达的孔隙结构有利于钠的释放。N2气氛热解半焦中被包覆的水溶钠占原煤总水溶钠的40%以上,通过孔结构表征推断中孔段堵塞是造成碳包覆的主要原因。多联产气氛下被包覆的水溶钠含量大幅减少,进而促进了钠释放以及钠长石(NaAlSi3O8)、霞石(NaAlSiO4)等高熔点硅铝酸盐的生成,有利于碱金属热解预处理。利用结渣指数及灰熔点对比了原煤及煤气气氛热解半焦的结渣特性,证明热解预处理能有效降低煤焦的结渣倾向。  相似文献   

4.
蔡建军  王清成  王全 《太阳能学报》2016,37(7):1631-1635
以传统生物质(稻壳)与潜在生物质(毛竹)为实验原料,通过热重法对生物质热解特性进行研究,利用单元体气化炉研究催化剂对生物质气化特性的影响。结果显示:脱灰除去矿物质后,热解曲线向高温区移动,反应活性降低;加入碱金属离子后,半焦产率提高,热解向低温区移动,反应活性增强。加入碱金属离子后,气化合成气中Cx Hy浓度大幅增大,并随催化剂含量的增大而增大。气化过程中,CO浓度曲线出现两个明显峰区,加入催化剂使前峰区面积显著增大、前移。在催化剂作用下,毛竹、稻壳的热解、气化特性明显改善。  相似文献   

5.
生物质气化技术已得到广泛的应用,但气化过程产生的焦油会影响设备稳定运行。为了大幅减少焦油的干扰,以梨木的热解炭为原料,在管式炉中进行水蒸气气化制取富氢燃气试验研究,探究了反应温度、K2CO3添加量及利用次数对气化特性的影响。结果表明:900℃时H2的产气量为2.19 L/g,合成气中H2含量超过58%;K2CO3添加量为10%时产气效果最佳,此时合成气中H2+CO含量达到了88.5%。当K2CO3催化剂在第三次利用时,仍有较好的催化效果。  相似文献   

6.
本文提出以Fe2O3为载氧体、以CaO捕集CO2的生物质化学链气化系统,利用Aspen Plus软件对该系统进行了模拟,以合成气组成(干基)、合成气氢碳比、含碳产物的碳摩尔分布、冷气效率及收率等为系统性能评价指标,重点分析了燃料反应器温度(TFR)、载氧体Fe2O3与生物质碳摩尔比(Fe2O3/C)、水蒸气与生物质碳摩尔比(Steam/C)、CaO与生物质碳摩尔比(CaO/C)等系统参数对固体生物质化学链气化系统的影响。结果表明,在TFR = 825℃、Fe2O3/C = 0.5、Steam/C = 0.71和CaO/C = 0.26条件下,合成气制备系统性能较优,合成气中H2和CO2含量分别为55.2%和15.4%,氢碳比为1.93,冷气效率为78.2%,被CaCO3捕集的生物质碳为18.2%,收率(湿气基)为1.95 Nm3/kgbiomass,其中合成气中H2和CO收率为1.24 Nm3/kgbiomass。  相似文献   

7.
生物质与塑料共热解是一种非常有效的生物质利用方法之一,但由于生物质结构的复杂性,共热解过程的机理尚不明晰。木质素是生物质的主要组分之一,本文通过热重-质谱联用仪和裂解器-气相色谱质谱仪研究其与高密度聚乙烯共热解过程,获取共热解特性及热解产物分布特性,以揭示共热解过程机制。结果显示,木质素与高密度聚乙烯共热解过程存在协同效应,使得热解失重速率加快,热解固体残渣含量减少。共热解过程有利于CH4、H2O、CO和C2H4的生成,抑制CO2的生成。同时,酚类、醇类和糖类等含氧化合物产量减少,烷烃和烯烃类化合物产量增加。结果表明,共热解过程会发生氢转移现象,氢与木质素衍生热解产物结合发生反应,从而抑制含氧化合物的生成,促进烷烃类和烯烃类化合物生成。  相似文献   

8.
为研究沥滤预处理对玉米残余物(玉米秸秆和玉米芯)结构、反应性能和动力学的影响,通过热重分析仪考察了生物质的反应特性,包括热解反应和气化反应,并对生物质的理化结构进行分析,包括晶格度、主要官能团和碳晶结构.结果表明,在N 2和CO 2气氛中,生物质热解反应特性类似,主要由其组成和反应温度决定.沥滤可除去生物质中的部分无机...  相似文献   

9.
试验研究了木屑在水蒸气气氛下的热失重行为及气化过程中合成气释放特性。首先采用TG-DTA对木屑样品进行了水蒸气气氛下的热重行为分析,结果表明,木屑气化过程可以分为挥发分释放和半焦气化两个阶段,分别可由二级反应动力学和三维扩散Ginstling-Broushtein方程描述,对应的表观活化能分别为87.014kJ/mol和103.35 kJ/mol。此外,在自制的固定床气化反应装置上,研究了生物质气化过程中挥发分释放和半焦气化阶段合成气释放特性。另外,半焦水蒸气气化阶段对气体中合成气含量和H2/CO起到决定性作用,通过合理调控半焦气化阶段反应条件,可以得到合适化学当量比的生物质合成气。  相似文献   

10.
石油炼厂加工纤维素/木质纤维素生物质原料的前景   总被引:1,自引:1,他引:0  
生物质热解与生物油改质、生物质气化与合成气费-托转化工艺是正在研究开发的第二代生物燃料技术,前者利用快速热解工艺对生物质进行热解或热加氢改质生成热解油;后者用生物质直接合成或先转化为生物油后再生成合成气,合成气经改质和转化生产费-托合成烃。许多石油公司都在以纤维素/木质纤维素为原料,研究开发在石油炼厂内对生物质原料进行后续加工和应用的相关技术。在石油炼厂中引入生物质原料,其挑战是要找到源自非食用生物质或生物质废弃物的原料,而且这些原料应易于运输并易于在炼厂中进行处理,同时应尽可能使用现有的工艺和装置。虽然石油炼厂加工生物质原料尚存在一些问题,但近来开发势头十分强劲。从长远角度来看,任何能为炼厂提供原料,生命周期分析证明能减少CO2排放,并在经济上可行的技术均会在生物燃料开发竞争中成为赢家。  相似文献   

11.
通过制备二甲醚合成气的生物质慢速热解气化实验,得到了热解气化炉中主要可调节参数热解温度、进料速率等与生物质热解气中H_2、CO等含量的数据.利用灰色关联方法,分析了主要可调节参数与生物质气中H_2、CO含量及H_2/CO比值的关系.结果表明:热解温度对生物质气中心、CO含量及H_2/CO比值的影响最为明显(其关联度为(0.705,0.760,0.641)),进料速率次之,罗茨风机抽气速率最弱;CO含量受3个主要可调节参数的影响最为明显(其关联度为(0.760,0.628,0.709)~T).根据该实验制备H_2/CO比值接近2的二甲醚合成气的目标和灰关联分析结果,提供了增大H_2/CO比值的方法.找出了热解气化炉中的可调节参数中影响生物质热解气体产物H_2、CO含量的主要参数,为生物质热解气化合成二甲醚中制备较高含量的H_2、CO及合适H_2/CO比值的合成气提供了前提条件.  相似文献   

12.
生物质是可再生能源的重要组成部分,储量巨大,但其含水量高、能量密度和热值低等缺点致使其研磨难度大、存储运输不便,难以资源化利用。本文对烘焙预处理技术的过程及特点、能耗分析和较为理想的烘焙标准进行了简述;并重点阐述了烘焙对生物质燃烧、热解和气化特性影响的研究进展。经烘焙处理后的生物质在炉膛内可快速、稳定燃烧,炉内温度迅速升高,产生的烟气量减少;热解产生的生物质焦油中水和乙酸含量明显减少,苯酚含量增加,热值总体升高;气化合成气品质明显提升,能量密度增大,总气化效率显著提高。此外,对烘焙预处理技术在城市固体废弃物处理的应用进行了简要的概述,并对其在生物质和城市固体废弃物研究方向上进行了展望。  相似文献   

13.
用Aspen Plus建立了双流化床气化和燃烧模型,对生物质在双流化床中气化及CaO吸收合成气中的CO2过程进行了模拟研究;探讨不同反应条件:气化温度、蒸汽与生物质的质量配比(S/B)以及CaO循环量与生物质的质量配比(Ca/B)对合成气成分的影响,为该类型工业反应器的研发提供了理论依据.模拟分析结果表明:气化温度低于700℃时,CaO能很好地吸收气化过程中产生的CO2并促进平衡反应向产氢方向进行;在温度为650℃及CaO作用下,S/B在0.6~1.7内对合成气成分的影响不大;CaO的加入能够有效地改善合成气的组成,合成气中氢气浓度能达到95%以上,氢气产量达到52 mol/kg.  相似文献   

14.
油棕废弃物及生物质三组分的热解动力学研究   总被引:4,自引:0,他引:4  
主要利用热重分析仪(TG)对油棕废弃物和生物质的三组分(半纤维素,纤维素和木质素)的热解特性进行了系统研究,对比分析了热解特性,计算了其热解动力学参数,并研究了升温速率对生物质热解特性的影响。研究发现半纤维素和纤维素易于热降解而木质素难于热解;油棕废弃物的热解可以化分为:干燥、半纤维素热解、纤维素热解和木质素热解4个阶段;生物质的热解反应主要是一级反应,油棕废弃物的活化能很低,约为60kJ/kg;升温速率对生物质影响很大,随升温速率加快,生物质热解温度升高,热解速率降低。  相似文献   

15.
利用Aspen Plus 软件建立干桦木屑在下吸式固定床气化炉中的气化模型,模拟值与文献实验值吻合良好。利用Aspen Plus的灵敏度分析模块模拟分别以水蒸气(H2O)和二氧化碳(CO2)为气化剂时气化剂/生物质碳比(GC值)对气化结果的影响,并结合H2O、CO2各自的特点研究其复合气化。结果表明,H2O气化时可获得富氢煤气,但其净CO2排放量较高;CO2气化时碳转化率及冷煤气效率较低,但净CO2排放量较低;H2O、CO2复合气化使碳转化率及冷煤气效率略有降低,但可有效减少气化系统中的净CO2排放量。  相似文献   

16.
生物质焦及其特性   总被引:10,自引:1,他引:10  
生物质焦是生物质热解的固体产物.文章综述了生物质焦的产生机理,热解反应条件及生物质的种类、颗粒大小、灰分含量、无机物含量等原料特性对生物质焦产量的影响规律,介绍了生物质焦的物理吸附特性,燃烧、气化的化学特性以及生物质焦的应用,其目的是为今后生物质焦的研究提供参考依据.  相似文献   

17.
建立干桦木屑在下吸式固定床气化炉中的Aspen Plus气化模型,该模型预测煤气组成和煤气热值,与文献试验结果吻合良好。利用灵敏度分析模块模拟了氧碳比、CO2/C对气化结果的影响,并提出O2/CO2分段气化流程,对比常规的CO2气化特征,分析了CO2/C对气化结果的影响。结果表明,纯氧气化时可获得高H2和CO浓度的气化气,但其净CO2排放量较高,氧碳比增加使碳转化率逐渐增加、冷煤气效率先增加后降低;CO2作为气化剂时,随着CO2/C的增加,净CO2排放量逐渐减少,但碳转化率及冷煤气效率大幅降低;与常规CO2气化相比,O2/CO2分段气化在保持低CO2排放量的同时,可有效增加气化过程中的碳转化率及冷煤气效率。  相似文献   

18.
利用自制的闭式循环装置对秸秆类生物质进行热解催化重整实验,探究了水蒸气量、热解温度、催化重整温度对合成气组分的影响。在此基础上,通过元素守恒和热力学平衡计算,建立了生物质催化重整模型,并使用一组实验数据对模型进行修正。利用修正后的模型对玉米秸秆热解气催化重整实验进行了模拟,预测温度、水蒸气添加量和生物质种类对合成气成分的影响。结果表明:当热解温度和催化重整温度均为850℃,S/B为1时,合成气的品质最佳;热解炉温度(750~900℃)升高有利于氢气的合成,催化重整炉温度(750~900℃)升高有利于温室气体(CO_2和CH_4)含量的减少。  相似文献   

19.
生物质通过热解可以获得热解气、生物油以及生物炭,实现其资源化、清洁高效利用。文章阐述了生物质热解过程中的反应机理,探讨了不同热解条件(如温度、升温速率和热解气氛)以及不同预处理方式(如烘焙、干燥、酸洗和水热)对生物质热解特性的影响。基于催化剂特性差异将用于生物质热解的催化剂分为固体酸和碱基催化剂并进行概述。在总结前人研究进展的基础上,梳理了有热载体和无热载体的生物质热解反应器的发展进程,针对生物质热解的研究因素较为单一的现状,提出通过围绕"微观结构-宏观调控"开展多尺度、定向调控、高效制备热解产物的方法,并对热解过程中自由基的变化研究不足以及热解催化剂失活等问题提出了展望,从而为生物质热解技术的发展提供理论依据,加快实现我国生物质的资源化利用。  相似文献   

20.
为了揭示催化剂对生物质热解过程的影响,文章以新疆棉秆为原料,研究了橄榄石及载镍橄榄石(NiO-olivine)对棉秆热解产物的影响规律,并对其物理、化学性质进行表征。研究结果表明:催化剂对生物质热解起到双重作用,一方面,促进半焦的进一步热解,提高生物质热解过程中碳的转化率和原料的利用率,另一方面,对热解焦油的裂解具有较好的催化作用,促进了焦油和甲烷的裂解/重整反应,从而提高了气体产率,H2含量提高一倍。生物质热解过程中,催化剂表面的NiO被热解气还原形成单质Ni充当活性中心;随着热解温度的升高,催化剂的催化效果更加明显;随着NiO负载量的增加,催化剂的催化活性不断增强,当负载量大于7%时,催化剂的自还原消耗大量的热解气导致产气中的H2和CO含量大幅度降低,CO2和H2O含量增加。该研究结果有助于深入了解镍基催化剂对生物质热解的影响机制,为生物质催化气化提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号