首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
In this work the recently proposed Reduced Enhanced Solid‐Shell (RESS) finite element, based on the enhanced assumed strain (EAS) method and a one‐point quadrature integration scheme, is extended in order to account for large deformation elastoplastic thin‐shell problems. One of the main features of this finite element consists in its minimal number of enhancing parameters (one), sufficient to circumvent the well‐known Poisson and volumetric locking phenomena, leading to a computationally efficient performance when compared to other 3D or solid‐shell enhanced strain elements. Furthermore, the employed numerical integration accounts for an arbitrary number of integration points through the thickness direction within a single layer of elements. The EAS formulation comprises an additive split of the Green–Lagrange material strain tensor, making the inclusion of nonlinear kinematics a straightforward task. A corotational coordinate system is used to integrate the constitutive law and to ensure incremental objectivity. A physical stabilization procedure is implemented in order to correct the element's rank deficiencies. A variety of shell‐type numerical benchmarks including plasticity, large deformations and contact are carried out, and good results are obtained when compared to well‐established formulations in the literature. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper we address the extension of a recently proposed reduced integration eight‐node solid‐shell finite element to large deformations. The element requires only one integration point within the shell plane and at least two integration points over the thickness. The possibility to choose arbitrarily many Gauss points over the shell thickness enables a realistic and efficient modeling of the non‐linear material behavior. Only one enhanced degree‐of‐freedom is needed to avoid volumetric and Poisson thickness locking. One key point of the formulation is the Taylor expansion of the inverse Jacobian matrix with respect to the element center leading to a very accurate modeling of arbitrary element shapes. The transverse shear and curvature thickness locking are cured by means of the assumed natural strain concept. Further crucial points are the Taylor expansion of the compatible cartesian strain with respect to the center of the element as well as the Taylor expansion of the second Piola–Kirchhoff stress tensor with respect to the normal through the center of the element. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper a new reduced integration eight‐node solid‐shell finite element is presented. The enhanced assumed strain (EAS) concept based on the Hu–Washizu variational principle requires only one EAS degree‐of‐freedom to cure volumetric and Poisson thickness locking. One key point of the derivation is the Taylor expansion of the inverse Jacobian with respect to the element center, which closely approximates the element shape and allows us to implement the assumed natural strain (ANS) concept to eliminate the curvature thickness and the transverse shear locking. The second crucial point is a combined Taylor expansion of the compatible strain with respect to the center of the element and the normal through the element center leading to an efficient and locking‐free hourglass stabilization without rank deficiency. Hence, the element requires only a single integration point in the shell plane and at least two integration points in thickness direction. The formulation fulfills both the membrane and the bending patch test exactly, which has, to the authors' knowledge, not yet been achieved for reduced integration eight‐node solid‐shell elements in the literature. Owing to the three‐dimensional modeling of the structure, fully three‐dimensional material models can be implemented without additional assumptions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
This contribution presents a refined constitutive and finite element formulation for arbitrary shell structures undergoing large elasto-plastic deformations. An elasto-plastic material model is developed by using the multiplicative decomposition of the deformation gradient and by considering isotropic as well as kinematic hardening phenomena in general form. A plastic anisotropy induced by kinematic hardening is taken into account by modifying the flow direction. The elastic part of deformations is considered by the neo-Hookean type of a material model able to deal with large strains. For an accurate prediction of complex through-thickness stress distributions a multi-layer shell kinematics is used built on the basis of a six-parametric shell theory capable to deal with large strains as well as finite rotations. To avoid membrane locking in bending dominated cases as well as volume locking caused by material incompressibility in the full plastic range the displacement based finite element formulation is improved by means of the enhanced assumed strain concept. The capability of the algorithms proposed is demonstrated by various numerical examples involving large elasto-plastic strains, finite rotations and complex through-thickness stress distributions.  相似文献   

5.
Conservative formulations of the governing laws of elastoplastic solid media have distinct advantages when solved using high‐order shock capturing methods for simulating processes involving large deformations and shock waves. In this paper one such model is considered where inelastic deformations are accounted for via conservation laws for elastic strain with relaxation source terms. Plastic deformations are governed by the relaxation time of tangential stresses. Compared with alternative Eulerian conservative models, the governing system consists of fewer equations overall. A numerical scheme for the inhomogeneous system is proposed based upon the temporal splitting. In this way the reduced system of non‐linear elasticity is solved explicitly, with convective fluxes evaluated using high‐order approximations of Riemann problems locally throughout the computational mesh. Numerical stiffness of the relaxation terms at high strain rates is avoided by utilizing certain properties of the governing model and performing an implicit update. The methods are demonstrated using test cases involving large deformations and high strain rates in one‐, two‐, and three‐dimensions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The objective of this contribution is to model ductile damage phenomena under consideration of large inelastic strains, to couple the corresponding constitutive law with a multi‐layer shell kinematics and to give finally an adequate finite element formulation. An elastic–plastic constitutive law is formulated by using a spatial hyperelasto‐plastic formulation based on the multiplicative decomposition of the deformation gradient. To include isotropic ductile damage the continuum damage model of Rousselier is modified so as to consider large strains and additionally extended by various void nucleation and macro‐crack criteria. In order to achieve numerical efficiency, elastic strains are supposed to be sufficiently small providing a numerical effective integration based on the backward Euler rule. Finite element formulation is enriched by means of the enhanced strain concept. Thus the well‐known deficiencies due to incompressible deformations and the inclusion of transverse strains are avoided. Several examples are given to demonstrate the performance of the algorithms developed concerning large inelastic strains of shells and ductile damage phenomena. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
Y. Başar  R. Grytz 《Acta Mechanica》2004,168(1-2):75-101
Summary. This contribution is concerned with the consideration of material incompressibility at large strains and proposes various methods for the enforcement of the corresponding constraint into finite-rotation shell models. The incompressibility condition can be expressed in terms of displacement as well as strain variables and is considered by means of three different procedures in the numerical implementation. As kinematic hypothesis a quadratic assumption with respect to the thickness coordinate is used in which the corresponding directors are decomposed into two stretch parameters and a common inextensible unit vector. Various constitutive laws holding for incompressible isotropic hyperelasticity are considered and directly coupled with shell equations through a numerical thickness integration. A 4-node isoparametric shell element is developed parameterizing the inextensible shell director in terms of rotation variables in the framework of an up-dated rotation formulation. Finally, several examples are analysed to identify the most effective procedure for modelling isochoric deformations in thin-walled structures.In memory of Y. Baar, who passed away on August 30, 2002.  相似文献   

8.
The present paper is concerned with an efficient framework for a nonlinear finite element procedure for the rate‐independent finite strain analysis of solids undergoing large elastic‐isochoric plastic deformations. The formulation relies on the introduction of a mixed‐variant metric deformation tensor which will be multiplicatively decomposed into a plastic and an elastic part. This leads to the definition of an appropriate logarithmic strain measure which can be additively decomposed into the exact isochoric (deviatoric) and volumetric (spheric) strain measures. This fact may be seen as the basic idea in the formulation of appropriate mixed finite elements which guarantee the accurate computation of isochoric strains. The mixed‐variant logarithmic elastic strain tensor provides a basis for the definition of a local isotropic hyperelastic stress response whereas the plastic material behavior is assumed to be governed by a generalized J2 yield criterion and rate‐independent isochoric plastic strain rates are computed using an associated flow rule. On the numerical side, the computation of the logarithmic strain tensors is based on higher‐order Padé approximations. To be able to take into account the plastic incompressibility constraint a modified mixed variational principle is considered which leads to a quasi‐displacement finite element procedure. Finally, the numerical solution of finite strain elastic‐plastic problems is presented to demonstrate the efficiency and the accuracy of the algorithm. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
Accuracy and efficiency are the main features expected in finite element method. In the field of low‐order formulations, the treatment of locking phenomena is crucial to prevent poor results. For three‐dimensional analysis, the development of efficient and accurate eight‐node solid‐shell finite elements has been the principal goal of a number of recent published works. When modelling thin‐ and thick‐walled applications, the well‐known transverse shear and volumetric locking phenomena should be conveniently circumvented. In this work, the enhanced assumed strain method and a reduced in‐plane integration scheme are combined to produce a new eight‐node solid‐shell element, accommodating the use of any number of integration points along thickness direction. Furthermore, a physical stabilization procedure is employed in order to correct the element's rank deficiency. Several factors contribute to the high computational efficiency of the formulation, namely: (i) the use of only one internal variable per element for the enhanced part of the strain field; (ii) the reduced integration scheme; (iii) the prevention of using multiple elements' layers along thickness, which can be simply replaced by any number of integration points within a single element layer. Implementation guidelines and numerical results confirm the robustness and efficiency of the proposed approach when compared to conventional elements well‐established in the literature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a novel reduced integration eight‐node solid‐shell finite element formulation with hourglass stabilization is proposed. The enhanced assumed strain method is adopted to eliminate the well‐known volumetric and Poisson thickness locking phenomena with only one internal variable required. In order to alleviate the transverse shear and trapezoidal locking and correct rank deficiency simultaneously, the assumed natural strain method is implemented in conjunction with the Taylor expansion of the inverse Jacobian matrix. The projection of the hourglass strain‐displacement matrix and reconstruction of its transverse shear components are further employed to avoid excessive hourglass stiffness. The proposed solid‐shell element formulation successfully passes both the membrane and bending patch tests. Several typical examples are presented to demonstrate the excellent performance and extensive applicability of the proposed element. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
12.
This paper presents eight‐node solid‐shell elements for geometric non‐linear analysis of elastic shells. To subdue shear, trapezoidal and thickness locking, the assumed natural strain method and an ad hoc modified generalized laminate stiffness matrix are employed. A selectively reduced integrated element is formulated with its membrane and bending shear strain components taken to be constant and equal to the ones evaluated at the element centroid. With the generalized stresses arising from the modified generalized laminate stiffness matrix assumed to be independent from the ones obtained from the displacement, an extended Hellinger–Reissner functional can be derived. By choosing the assumed generalized stresses similar to the assumed stresses of a previous solid element, a hybrid‐stress solid‐shell element is formulated. Commonly employed geometric non‐linear homogeneous and laminated shell problems are attempted and our results are close to those of other state‐of‐the‐art elements. Moreover, the hybrid‐stress element converges more readily than the selectively reduced integrated element in all benchmark problems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
An alternative approach for developing practical large‐strain finite elements has been introduced and used to create a three‐dimensional solid element that exhibits no locking or hourglassing, but which is more easily and reliably derived and implemented than typical reduced‐integration schemes with hourglassing control. Typical large‐strain elements for forming applications rely on reduced integration to remove locking modes that occur with the coarse meshes that are necessary for practical use. This procedure introduces spurious zero‐energy deformation modes that lead to hourglassing, which in turn is controlled by complex implementations that involve lengthy derivations, knowledge of the material model, and/or undetermined parameters. Thus, for a new material or new computer program, implementation of such elements is a daunting task. Wang–Wagoner‐3‐dimensions (WW3D), a mixed, hexahedral, three‐dimensional solid element, was derived from the standard linear brick element by ignoring the strain components corresponding to locking modes while maintaining full integration (8 Gauss points). Thus, WW3D is easily implemented for any material law, with little chance of programming error, starting from programming for a readily available linear brick element. Surprisingly, this approach and resulting element perform similarly or better than standard solid elements in a series of numerical tests appearing in the literature. The element was also tested successfully for an applied sheet‐forming analysis problem. Many variations on the scheme are also possible for deriving special‐purpose elements. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we present an optimal low‐order accurate piezoelectric solid‐shell element formulation to model active composite shell structures that can undergo large deformation and large overall motion. This element has only displacement and electric degrees of freedom (dofs), with no rotational dofs, and an optimal number of enhancing assumed strain (EAS) parameters to pass the patch tests (both membrane and out‐of‐plane bending). The combination of the present optimal piezoelectric solid‐shell element and the optimal solid‐shell element previously developed allows for efficient and accurate analyses of large deformable composite multilayer shell structures with piezoelectric layers. To make the 3‐D analysis of active composite shells containing discrete piezoelectric sensors and actuators even more efficient, the composite solid‐shell element is further developed here. Based on the mixed Fraeijs de Veubeke–Hu–Washizu (FHW) variational principle, the in‐plane and out‐of‐plane bending behaviours are improved via a new and efficient enhancement of the strain tensor. Shear‐locking and curvature thickness locking are resolved effectively by using the assumed natural strain (ANS) method. We also present an optimal‐control design for vibration suppression of a large deformable structure based on the general finite element approach. The linear‐quadratic regulator control scheme with output feedback is used as a control law on the basis of the state space model of the system. Numerical examples involving static analyses and dynamic analyses of active shell structures having a large range of element aspect ratios are presented. Active vibration control of a composite multilayer shell with distributed piezoelectric sensors and actuators is performed to test the present element and the control design procedure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
A 4-node element with 1 integration point is developed for the analysis of elastoplastic large strains. It is based on the Hu-Washizu principle and uses a co-rotational formulation. Special care is taken to avoid spurious zero-energy modes and incompressibility locking. This element successfully passes the large strain patch test. It proves to be accurate and computationally very cheap.  相似文献   

16.
A four‐node corotational quadrilateral elastoplastic shell element is presented. The local coordinate system of the element is defined by the two bisectors of the diagonal vectors generated from the four corner nodes and their cross product. This local coordinate system rotates rigidly with the element but does not deform with the element. As a result, the element rigid‐body rotations are excluded in calculating the local nodal variables from the global nodal variables. The two smallest components of each nodal orientation vector are defined as rotational variables, leading to the desired additive property for all nodal variables in a nonlinear incremental solution procedure. Different from other existing corotational finite‐element formulations, the resulting element tangent stiffness matrix is symmetric owing to the commutativity of the local nodal variables in calculating the second derivative of strains with respect to these variables. For elastoplastic analyses, the Maxwell–Huber–Hencky–von Mises yield criterion is employed, together with the backward‐Euler return‐mapping method, for the evaluation of the elastoplastic stress state; the consistent tangent modulus matrix is derived. To eliminate locking problems, we use the assumed strain method. Several elastic patch tests and elastoplastic plate/shell problems undergoing large deformation are solved to demonstrate the computational efficiency and accuracy of the proposed formulation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
In the present contribution we propose an optimal low‐order versatile partial hybrid stress solid‐shell element that can be readily employed for a wide range of geometrically linear elastic structural analyses, that is, from shell‐like isotropic structures to multilayer anisotropic composites. This solid‐shell element has eight nodes with only displacement degrees of freedom and only a few internal parameters that provide the locking‐free behavior and accurate interlaminar shear stress resolution through the element thickness. These elements can be stacked on top of each other to model multilayer composite structures, fulfilling the interlaminar shear stress continuity at the interlayer surfaces and zero traction conditions on the top and bottom surfaces of composite laminates. The element formulation is based on the modified form of the well‐known Fraeijs de Veubeke–Hu–Washizu multifield variational principle with enhanced assumed strains formulation and assumed natural strains formulation to alleviate the different types of locking phenomena in solid‐shell elements. The distinct feature of the present formulation is its ability to accurately calculate the interlaminar shear stress field in multilayer structures, which is achieved by the introduction of the assumed interlaminar shear stress field in a standard enhanced assumed strains formulation based on the Fraeijs de Veubeke–Hu–Washizu principle. The numerical testing of the present formulation, employing a variety of popular numerical benchmark examples related to element patch test, convergence, mesh distortion, shell and laminated composite analyses, proves its accuracy for a wide range of structural analyses.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Element locking is often seen in homogenized models of elastic fiber‐reinforced materials, and splitting the material compliance into two separate terms isolates troublesome strain modes. Once isolated, the locking modes can be addressed with tailored integration schemes or the opportune introduction of field variables. The canonical application of this approach is seen in the dilatational‐deviatoric split used to treat so‐called ‘volumetric locking’. In the present work, we invoke the spectral decomposition of the material compliance to provide a generalized split. Doing so naturally parses the response into six independent strain modes, with varying propensity for locking. This split can be used to generalize fundamental techniques, such as selective reduced integration and the B‐bar method. This broadened approach works to remedy locking suffered by lower order finite elements used to discretize troublesome materials. Applying these generalized methods to achieve the dilational‐deviatoric split is trivial. However, the compliance spectrum's ability to naturally isolate stiff material response modes makes it a uniquely valuable tool for use on homogenized anisotropic materials. Applying the split, defined by only the first compliance mode, has given rise to the generalized methods, which have proven effective in unlocking finite element models of anisotropic materials. In the present work, the generalization is broadened to treat more than one constrained mode. While treating six modes is equivalent to simple reduced integration techniques, up to five compliance modes are now separated for advantageous treatment. However, some attention must be paid to the stability of the resulting finite element stiffness matrices. We focus here on the treatment of two principal compliance modes. These ‘two‐mode’ applications of the generalized B‐bar method are shown to be a more robust default treatment of linear hexahedral elements than is provided by classical selective reduced integration. This is achieved with a negligible computational overhead. A framework for assessing element stability is delineated, and commonly arising instabilities are analyzed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Anisotropic elastic materials, such as the homogenized model of a fiber‐reinforced matrix, can display near rigidity under certain applied stress–the resulting strains are small compared with the strains that would occur for other stresses of comparable magnitude. The anisotropic material could be rigid under hydrostatic pressure if the material were incompressible, as in isotropic elasticity, but also for other stresses. Some commonly used finite elements are effective in dealing with incompressibility, but are ill‐equipped to handle materials that lock under non‐hydrostatic stress states (e.g., uniformly reduced serendipity and Q1/Q0 B‐bar hexahedra). The failure of the original B‐bar method is attributed to the assumption that the mode of deformation to be relieved is one of near incompressibility. The remedy proposed here is based on the spectral decomposition of the compliance matrix of the material. The spectrum can be interpreted to separate nearly‐rigid and flexible modes of stress and strain, which leads naturally to a generalized selective reduced integration. Furthermore, the spectral decomposition also enables a three‐field elasticity formulation that results in a B‐bar method that is effective for general anisotropic materials with an arbitrary nearly‐rigid mode of deformation.Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
An adaptively stabilized monolithic finite element model is proposed to simulate the fully coupled thermo‐hydro‐mechanical behavior of porous media undergoing large deformation. We first formulate a finite‐deformation thermo‐hydro‐mechanics field theory for non‐isothermal porous media. Projection‐based stabilization procedure is derived to eliminate spurious pore pressure and temperature modes due to the lack of the two‐fold inf‐sup condition of the equal‐order finite element. To avoid volumetric locking due to the incompressibility of solid skeleton, we introduce a modified assumed deformation gradient in the formulation for non‐isothermal porous solids. Finally, numerical examples are given to demonstrate the versatility and efficiency of this thermo‐hydro‐mechanical model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号