首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The styrene butadiene rubber (SBR)–clay nanocompounds were prepared by the latex compounding method, and then hexadecyl trimethyl ammonium bromide (C16) and 3‐aminopropyl triethoxy silane (KH550) were added into these nanocompounds on a two‐roll mill to prepare nanocomposites with strong interfacial interaction. The structure and properties of SBR–clay nanocomposites were carefully studied by X‐ray diffraction (XRD) studies, transmission electron microscopy (TEM), Rubber Process Analyzer (RPA), and mechanical testing. Compared with unmodified nanocomposites, the dispersion structure of modified SBR–clay nanocomposites is better with part rubber‐intercalated or part modifier‐intercalated structure. The tensile strength and the modulus at 300% elongation of modified SBR–clay nanocomposites are higher than three times of those of unmodified nanocomposites, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1826–1833, 2007  相似文献   

2.
Among different methods for preparation of rubber–clay nanocomposites, melt intercalation and latex‐coagulation methods are more practiced. In this study, dispersion of pristine nanoclay by the latex‐coagulation method and organically modified nanoclay by the melt‐intercalation method in styrene butadiene rubber were compared, based on the same amount of mineral clay in the composites. Dispersion of nanoclay was examined by X‐ray diffraction before and after vulcanization, and by atomic force microscopy after vulcanization. It was shown that final structure of nanoclay in the composites was intercalated by both methods, with better dispersion resulting from coagulation of latex over mixing in the melt state. Dynamic–mechanical–thermal analysis and tension tests were used to further assess dispersion and polymer–filler interactions. These tests confirmed better dispersion and larger interfacial area for pristine nanoclay in the latex‐coagulated rubber through observing lower peak loss factor, higher growth of stress in stretching, and lower elongation at break when compared with those for the nanocomposite prepared by the melt mixing. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Nanoparticle vermiculite (VMT) clay was prepared by treatment with hydrochloric acid. Styrene‐butadiene rubber (SBR) nanocomposites were prepared by mixing different contents (2.5, 5, 7.5, and 10 phr) of untreated (VMT) and acid‐treated (DVMT) vermiculite clay, respectively. In addition, different contents (3, 7, and 10 phr) of maleic anhydride (MA) as compatibilizer were mixed via direct melt compounding in internal mixer. The effect of gamma irradiation, VMT clay, and MA contents on the mechanical properties was studied. The acid‐treated VMT clay was characterized by x‐ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared (FT‐IR) spectroscopy. Meanwhile, the SBR/VMT composites, SBR/DVMT, and SBR/DVMT/MA nanocomposites were characterized via crosslinking density and tensile mechanical testing and FT‐IR spectroscopic analysis. The results indicated that good yield of nanoparticle vermiculite was achieved when the acid treatment was carried out for 120 h. In addition, the results showed that the presence of DVMT clay improved the chemical bonding in the SBR nanocomposites and hence their mechanical properties. The highest improvement was obtained when the contents of DVMT clay, MA, and irradiation dose were 10 phr, 3 phr, and 100 kGy, respectively. POLYM. ENG. SCI., 59:355–364, 2019. © 2018 Society of Plastics Engineers  相似文献   

4.
In rubber nanocomposites containing inorganic clay, the reinforcement effect has always been relatively insignificant due to the poor interfacial interaction between the rubber matrix and clay fillers. In this work, the silane coupling agent bis[3‐(triethoxysilyl)propyl]tetrasulfide (Si‐69) was employed through mechanically blending with styrene butadiene rubber (SBR)/clay (100/30) nanocompound that was prepared by combined latex compounding and spray‐drying technique, to serve as the molecular bridge between SBR matrix and clay filler and strengthen the interfacial interaction. TEM and XRD characterization indicated that Si‐69 significantly improved the dispersion of the silicate layers in the SBR matrix. The RPA analysis and the mechanical property study of the SBR/clay nanocomposites revealed that the filler network interaction was weakened while the filler–rubber interaction was strengthened upon the addition of Si‐69. POLYM. COMPOS., 37:890–896, 2016. © 2014 Society of Plastics Engineers  相似文献   

5.
Nanocomposites of two different kinds of rubber (acrylonitrile-butadiene rubber NBR and styrene butadiene rubber SBR)/organo-montmorillonite nanocomposites modified by hexadecyltrimethyl ammonium bromide were prepared by the reactive mixing intercalation method in the presence of trimethylolpropane trimethylmethacrylate (TMPTMA). The influence of gamma irradiation on the morphology and properties of the rubber nanocomposites was investigated. Intercalated polar or unsaturated matrices (e.g., NBR and SBR)/OMMT nanocomposites can be obtained, which was confirmed by X-ray diffraction (XRD). The clay layers could be uniformly dispersed in the rubber matrix on the nanometer level. Mechanical tests showed that the nanocomposites had good mechanical properties as compared to the neat composites. The results also showed that the irradiated NBR/OMMT nanocomposites had higher thermal stabilities than irradiated SBR/OMMT nanocomposites.  相似文献   

6.
Though a large number of nanocomposites prepared by solution process has been reported in the literature, effect of solution concentration on properties of the nanocomposites has not been studied. In the present work, new fluorocarbon–clay nanocomposites were prepared by a solution mixing process. Characterization of the nanocomposites was done with X‐ray diffraction technique and atomic force microscopy. Effects of different rubber‐solution concentrations (5, 10, 15, 20, and 25 wt %) on the mechanical and dynamic mechanical properties of the resultant nanocomposites were investigated. Optimum properties were achieved at 20 wt % solution. The data could be explained with the help of structure of the nanocomposites and dispersion of the clay. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2407–2411, 2006  相似文献   

7.
In the present study, naturally occurring unfractionated bentonite clay was used to prepare styrene butadiene rubber/bentonite clay nanocomposite by latex stage blending. The bentonite clay was organo‐modified by in situ resol formation by the reaction of resorcinol and formaldehyde. The latex clay mixture was co‐coagulated with acid. The resulting clay masterbatch was compounded and evaluated by Fourier Transform Infrared spectroscopy, X‐ray diffraction (XRD), Transmission Electron Microscopy (TEM), Energy Dispersive X‐ray spectroscopy (EDS), Scanning Electron Microscopy, Thermogravimetric analysis, and Differential Scanning Calorimetry. XRD showed that the interplanar distance of the in situ resol‐modified bentonite clay increased from 1.23 to 1.41 nm for the unmodified bentonite. TEM analysis indicated partial exfoliation and/or intercalation. EDS (Si and Al mapping) of the clay revealed the nature of the dispersion in the nanocomposites vis‐à‐vis the conventional styrene‐butadiene rubber (SBR)/bentonite clay composite. Thermogravimetric analysis was used to compare the decomposition trends of the SBR/clay nanocomposites with the SBR/clay composite. The glass transition temperature of SBR/clay nanocomposites increased as compared with that of neat SBR. Substantial improvement in most of the other mechanical properties was also observed in case of the nanocomposites. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

8.
Rubber‐based nanocomposites were prepared with octadecyl amine modified sodium montmorillonite clay and styrene–butadiene rubber with different styrene contents (15, 23, and 40%). The solvent used to prepare the nanocomposites, the cure conditions, and the cure system were also varied to determine their effect on the properties of the nanocomposites. All the composites were characterized with X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The XRD studies revealed exfoliation for the modified clay–rubber composites. The TEM photomicrographs showed a uniform distribution of the modified clay in the rubber matrix. The thickness of the particles in the exfoliated composites was around 10–15 nm. Although the FTIR study of the unmodified and modified clays showed extra peaks due to the intercalation of the amine chains into the gallery, the spectra for the rubber–clay nanocomposites were almost the same because of the presence of a very small amount of clay in the rubber matrix. All the modified clay–rubber nanocomposites displayed improved mechanical strength. The styrene content of the rubber had a pronounced effect on the properties of the nanocomposites. With increasing styrene content, the improvement in the properties was greater. Dicumyl peroxide and sulfur cure systems displayed similar strength, but higher elongation and slightly lower modulus values were obtained with the sulfur cure system. The curing of the samples at four different durations at 160°C showed that the cure time affected the properties. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 698–709, 2004  相似文献   

9.
The properties of nano‐zinc oxide master batch filled butadiene styrene rubber (SBR) systems were researched in comparison with those of common zinc oxide and nano‐zinc oxide filled systems. First, the nano‐zinc oxide master batch was prepared and the cure characteristics of three different kinds of zinc oxide filled SBR composites were studied; second, the mechanical properties and wear resistance were compared; then, the improved mechanical properties were confirmed by dynamic mechanical properties and transmission electron microscopy. Finally, the zinc oxide amount reducing mechanism was analyzed. Results show that nano‐zinc oxide master batch filled SBR system has better mechanical properties than those of nano‐zinc oxide and common zinc oxide filled systems, which is due to the improved dispersion by master batch mixing technology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 922–930, 2006  相似文献   

10.
The nanocomposites of nitrile–butadiene rubber (NBR) and organo‐montmorillonite modified by hexadecyltrimethyl ammonium bromide (HMMT) were prepared by the reactive mixing intercalation method in the presence of the resorcinol and hexamethylenetetramine complex (RH). The structure of the NBR–RH–HMMT nanocomposites was characterized by XRD, TEM, FTIR, determination of crosslinking density, and so on. The results showed that the d‐spacing of HMMT increased substantially with RH addition and the layers of HMMT were dispersed in rubber matrix on a nanometer scale. The mechanical properties of the NBR–RH–HMMT nanocomposites were far superior to those of NBR–HMMT composites, and the glass transition temperature of NBR–RH–HMMT nanocomposite was higher than that of NBR. The reactive mixing intercalation method by introducing RH could enhance the interface combination between the rubber and the organoclay through the interactions of RH with NBR and modified clay. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1905–1913, 2006  相似文献   

11.
The aggregation structure of lignin in aqueous solution had an important effect on the dispersion of lignin and the properties of lignin/styrene–butadiene rubber (SBR) composites. This article revealed the relationship between aggregation structure and chemical structure of modified lignin. Unmodified lignin was amorphous; however, our results showed that aldehyde‐modified lignin was transformed into spherical aggregates, while propylene‐oxide‐modified lignin self‐aggregated into supramolecular domains. The relationships between aggregation structure, filler dispersion, filler–rubber interaction, and performance were also studied by investigating the microstructure, viscoelastic behavior, and mechanical properties of lignin/SBR composites. Meanwhile, a solution to improve the coprecipitation efficiency of lignin and SBR latex was proposed. In this article, epoxidized natural rubber (ENR) was also used as compatibilizer to improve the interfacial adhesion between polar lignin and nonpolar SBR. The results showed better lignin dispersion for the ENR‐containing rubber composites, as well as superior wet skid resistance and lower rolling resistance. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45759.  相似文献   

12.
Natural rubber nanocomposites were produced by melt‐mixing of natural rubber with organically modified silicates. For comparison, a pristine‐layered silicate and a nonlayered version [English Indian clay (EIC)] were also included in the study. The layered silicate used was sodium bentonite (BNT) and organoclays used were octadecylamine‐ modified montmorillonite (MMT‐ODA) and methyltallow bis‐2‐hydroxyethyl ammonium‐modified montmorillonite (MMT‐ TMDA). Accelerated sulfur system was used for the vulcanization of the nanocomposites. The dispersion of these silicates was studied by X‐ray diffraction and transmission electron microscopy. The organoclay‐incorporated composites exhibited faster curing and improved mechanical properties. The improvement in the mechanical properties of the composites followed the order MMT‐ODA > MMT‐TMDA > EIC > BNT. The property improvement was attributed to the intercalation/exfoliation of the organically modified silicates because of their high initial interlayer distance. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2537–2543, 2006  相似文献   

13.
Rubber nanocomposites based on styrene–butadiene rubber (SBR) and organophilic layered silicate were prepared. Clay structures based on dodecyl benzene sulfonic acid (DBSA), nonyl phenol ethoxylate (NPE), and DBSA/NPE (50/50%) were prepared and characterized. The results indicate the intercalation of the used surfactants within the clay layers. Varying amount of organoclay, 2, 4, 6, 8, and 10 (phr), was added to the SBR matrix. X‐ray diffraction revealed exfoliated structure for the modified clay–SBR composites. No new component in the rubber was found by fourier transform infrared measurements (FTIR). Scanning electron microscopy showed a uniform distribution of the modified clay with mixed DBSA/NPE (6 phr) in the matrix. The rheometric characteristics and physicomechanical properties of the SBR compounds were analyzed. The effect of DBSA/NPE clay loading on aging resistance of SBR nanocomposites at 90 ± 1°C for 4 and 7 days was also investigated. Rubber nanocomposites displayed an increase in the minimum and maximum torques, acceleration of the vulcanization process, and improved mechanical properties, with organoclay content up to 6 phr. This effect was more noticeable in the presence of the treated clay with DBSA/NPE. Also incorporation of DBSA/NPE‐clay (6 phr) resulted in significant improvement of the degradation profile of the nanocomposites at 90 ± 1°C for 4 days. POLYM. COMPOS., 36:1293–1302, 2015. © 2014 Society of Plastics Engineers  相似文献   

14.
Styrene butadiene rubber (SBR) as matrix was reinforced separately with 9, 15 and 21 nm sizes of CaCO3, which were synthesized by matrix mediated growth technique. The mixing and compounding was done on two-roll mill and sheets were prepared in compression molding machine. The effect of nature and loading of nano CaCO3 on these rubber nanocomposites was investigated thoroughly by different characterizations such as DSC, TGA, XRD, and mechanical properties. An appreciable increase in glass transition temperature has been observed from DSC study. 9 nm sizes of CaCO3/SBR composites show more increment in Tg as compared to pristine SBR as well as different sizes of CaCO3 filled SBR. This increment in Tg is due to restricted mobility of nano CaCO3 filled SBR nanocomposites. XRD study of nanocomposites showed that nano CaCO3 dispersed uniformly throughout the matrix because of the small peak at lower 2θ. This uniform dispersion of nano CaCO3 contributes towards the higher mechanical properties of rubber composites. From TGA study, it was observed that as the size of CaCO3 reduces the thermal stability increases as compared to pristine SBR. The other results of these rubber nanocomposites were compared with commercial CaCO3 filled SBR. Partly this research paper has been presented in International conference on ‘RubberChem 2006, Dec 5–6, 2006, Munich, Germany.  相似文献   

15.
In this work, graphene oxide (GO) with various oxidation degrees were synthesized by adjusting the dosage of oxidation agent based on a modified Hummers' method, and were then used for the fabrication of the styrene–butadiene rubber (SBR)/GO nanocomposites through latex coagulation method, followed by a high‐temperature cure process. The vulcanization characteristics, thermal stability, mechanical properties, thermal conductivity as well as solvent resistance of SBR/GO nanocomposites were investigated. The results indicated that various surface structures of GO due to oxidation degrees may lead to different dispersion states of GO in the rubber matrix, and thus greatly influenced the cure rate, mechanical properties as well as thermal conductivity of SBR/GO nanocomposites. The optimal (moderate) oxidation degree of GO was achieved at the oxidation agent (KMnO4)/graphite weight ratio 9/5, for which case the tensile strength, tear strength, and thermal conductivity of SBR/GO nanocomposites increased by 271.3%, 112.3%, and 28.6%, respectively, compared with those of neat SBR. In addition, the mentioned nanocomposites also showed the best solvent resistance in toluene. POLYM. ENG. SCI., 58:1409–1418, 2018. © 2017 Society of Plastics Engineers  相似文献   

16.
Carboxylated acrylonitrile–butadiene rubber (XNBR) and styrene–butadiene rubber (SBR) composites with 3 phr (parts per hundred rubber) graphene oxide (GO) were prepared using a latex mixing method. Effects of XNBR/SBR blend ratios on the mechanical properties, thermal conductivity, solvent resistance and thermal stability of the XNBR/SBR/GO nanocomposites were studied. The tensile strength, tear strength, thermal conductivity and solvent resistance of the XNBR/SBR/GO (75/25/3) nanocomposite were significantly increased by 86, 96, 12 and 21%, respectively, compared to those of the XNBR/SBR (75/25) blend. The thermal stability of the nanocomposite was significantly enhanced; in other words, the temperature for 5% weight loss and the temperature of the maximal rate of degradation process were increased by 26.01 and 14.97 °C, respectively. Theoretical analysis and dynamic mechanical analysis showed that the GO tended to locate in the XNBR phase, which led to better properties of the XNBR/SBR/GO (75/25/3) nanocomposite. © 2017 Society of Chemical Industry  相似文献   

17.
Sodium‐montmorillonite nanoclay was modified with octadecylamine and compounded with natural rubber (NR) by dry mixing method. The effects of organoclay loading level on mechanical properties, thermal–mechanical behavior, and heat build‐up of NR/organoclay nanocomposites were investigated. Temperature scanning stress relaxation technique was used to characterize the thermal–mechanical behavior of the composites. The morphological properties were assessed by X‐ray diffraction and transmission electron microscopy. Loading levels of organoclay below 5 phr gave improved mechanical properties and heat build‐up, along with exfoliated clay structure in the nanocomposites. On the other hand, with loading levels above 7 phr the organoclay tended to agglomerate, and X‐ray diffraction revealed an intercalated structure. In these cases, the excess residual organoclay caused significantly increased stress relaxation and heat build‐up. Unmodified sodium‐montmorillonite as filler did not significantly affect the mechanical and heat build‐up properties of NR vulcanizates. POLYM. COMPOS., 37:1735–1743, 2016. © 2014 Society of Plastics Engineers  相似文献   

18.
《Polymer Composites》2017,38(11):2594-2602
Novel rice bran carbon (RBC) filled styrene butadiene rubber (SBR) composites were fabricated by latex compounding method (LCM). The chemical structure determination and the static precipitation experiments definitely authenticated the hydrophilicity of RBC, which enables RBC to be uniformly dispersed in water without surface modification and thereby compounded with rubber latex directly. The SBR/RBC composites prepared by LCM exhibited homogeneous filler dispersion state and superior mechanical properties compared with those compounded by solid compounding method (SCM). The vulcanization properties, mechanical properties, thermal stabilities, and swelling properties of SBR/RBC composites prepared by LCM were studied. It was revealed that the tensile strength, modulus, and tear strength of SBR/RBC composites increased correspondingly as the RBC loading increased from 0 to 80 phr. The decomposition temperature would stop rising when the filler loading exceeded 40 phr. The significant increases of the crosslink density with increasing filler volume content indicated the reinforcement effect of RBC. POLYM. COMPOS., 38:2594–2602, 2017. © 2015 Society of Plastics Engineers  相似文献   

19.
Rubber/organic clay (OC) nanocomposites were produced by melt blending. Polar or unsaturated matrices (e.g., NBR and SBR) could easily enter into OC layers, whereas using nonpolar unsaturated rubber (EPDM), without other additives' help, intercalation structure could not be directly obtained. For the EPDM system, an intercalated structure was observed in presence of stearic acid (SA) for composites composed of SA and OC. Transmission electron microscopy observation showed that the dispersion of clay in nonpolar saturated rubber matrix was much poorer than that in polar or unsaturated matrix. The same effect of polar matrix was confirmed by comparison between IIR/OC and BIIR/OC systems. Moreover, using OC pretreated by SA (S‐OC), the dispersion of clay was obviously improved in the investigated nanocomposites, due to the intercalation of SA into OC interlayers. Especially in the nonpolar saturated EPDM system, the intercalation structure could be easily observed. Relative to the corresponding nanocomposites using OC, tensile strengths and the stresses at low strain of NBR and SBR based nanocomposites with S‐OC were significantly improved; while with EPDM nanocomposite, using S‐OC, only tensile strengths were improved but the stresses at low strain were almost the same, which should be related to the different interfacial force between OC and different rubber matrices. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
High‐abrasion furnace black (HAF, grade N330)–filled powdered styrene butadiene rubber [P(SBR/HAF)] was prepared and the particle size distribution, mixing behavior in a laboratory mixer, and mechanical properties of P(SBR/HAF) were studied. A carbon black–rubber latex coagulation method was developed for preparing carbon black–filled free‐flowing, noncontact staining SBR powders, with particle diameter less than 0.9 mm, under the following conditions: carbon black content > 40 phr, emulsifier/carbon black ratio > 0.02, and coating resin content > 2.5 phr. Over the experimental range, the mixing torque τα of P(SBR/HAF) was not as sensitive to carbon black content and mixing temperature as that of HAF‐filled bale SBR (SBR/HAF), whereas the temperature build‐up ΔT showed little dependency on carbon black content. Compared with SBR/HAF, P(SBR/HAF) showed a 20–30% mixing energy reduction with high carbon black content (>30 phr), which confers to powdered SBR good prospects for internal mixing. Carbon black and the rubber matrix formed a macroscopic homogenization in P(SBR/HAF), and the incorporation step is not obvious in the internal mixing processing results in these special mixing behaviors of P(SBR/HAF). A novel mixing model of carbon black–filled powdered rubber, during the mixing process in an internal mixer, was proposed based on the special mixing behaviors. P(SBR/HAF) vulcanizate showed better mechanical properties than those of SBR/HAF, dependent primarily on the absence of free carbon black and a fine dispersion of filler on the rubber matrix attributed to the proper preparation conditions of noncontact staining carbon black–filled powdered SBR. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2494–2508, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号