首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Ziegler-Natta and Metallocene Catalysis isotactic polypropylene with different chemical defects were isothermally crystallized at various crystallization temperatures. The crystal thickness and their corresponding melting behavior were studied using small angle X-ray scattering, atomic force microscopy, optical microscopy, and differential scanning calorimetry. The equilibrium melt temperature of the samples was calculated from the Hofmann-Weeks extrapolation for the supercooling. Two lamellar populations were distinctly observed in all cases during the crystallization process. Relatively thicker and stable lamellar crystals which melt at higher temperatures were observed with lowering the supercooling and found catalysis dependence in these crystals. During melting, no significant recrystallization of the samples has been detected for higher crystallization temperature where recrystallization processes enhance the lamellae thickness. The melting of the crystals has found strong dependence with the crystallization temperatures, the catalysis process and the nature of the defects present in the isotactic polypropylene. The increase of the crystal lamellae thickness and their melting temperature might be presumably related with the chain folding mechanism as well as the stability of the crystals formed during the isothermal crystallization process. A combined plot of SAXS and DSC results is demonstrated for the equilibrium melting temperature followed by critical analysis of the results.  相似文献   

2.
The nanostructure, morphology, and thermal properties of polyamide 6 (PA6)/clay nanocomposites were studied with X‐ray scattering, differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The wide‐angle X‐ray diffraction (WAXD) and TEM results indicate that the nanoclay platelets were exfoliated throughout the PA6 matrix. The crystallization behavior of PA6 was significantly influenced by the addition of clay to the polymer matrix. A clay‐induced crystal transformation from the α phase to the γ phase for PA6 was confirmed by WAXD and DSC; that is, the formation of γ‐form crystals was strongly enhanced by the presence of clay. With various clay concentrations, the degree of crystallinity and crystalline morphology (e.g., spherulite size, lamellar thickness, and long period) of PA6 and the nanocomposites changed dramatically, as evidenced by TEM and small‐angle X‐ray scattering results. The thermal behavior of the nanocomposites was investigated with DSC and compared with that of neat PA6. The possible origins of a new clay‐induced endothermic peak at high temperature are discussed, and a model is proposed to explain the complex melting behavior of the PA6/clay nanocomposites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1191–1199, 2007  相似文献   

3.
The origins of the single‐ and double‐melting endotherms of isotactic polypropylene crystallized at different temperatures were studied carefully by differential scanning calorimetry, wide‐angle X‐ray diffraction, and small‐angle X‐ray scattering. The experimental data show that spontaneous crystallization occurs when the crystallization temperature is lower than 117°C; thus the lamellae formed are imperfect. At a lower heating rate, the recrystallization or reorganization of these imperfect lamellae leads to double endotherms. On the other hand, when the crystallization temperature is higher than 136°C, two major kinds of lamellae with different thickness are developed during the isothermal process, which also results in the double‐melting endotherms. In the intermediate temperature range the lamellae formed are perfect, and there is only a single peak in the distribution of lamellar thickness. This explains the origin of the single‐melting endotherm. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 163–170, 2000  相似文献   

4.
The lamellar morphological information and subsequent melting behaviour of syndiotactic polypropylene (s‐PP) samples isothermally crystallized at crystallization temperatures ranging from 30 to 95 °C have been investigated using a combination of wide‐angle X‐ray diffraction (WAXD), small‐angle X‐ray scattering (SAXS) and differential scanning calorimetry (DSC) techniques. Three known methods for determining the equilibrium melting temperature Tm°, namely the Gibbs–Thomson extrapolation, the linear Hoffman–Weeks extrapolation and the non‐linear Hoffman–Weeks extrapolation, have been employed to evaluate this important thermodynamic parameter, and the results obtained are compared. Finally, an estimate of the equilibrium melting temperature for a perfect s‐PP sample (Tm°)100% is given. © 2000 Society of Chemical Industry  相似文献   

5.
This article investigated the crystallization kinetics, melting behavior, and morphologies of poly(butylene succinate)(PBS) and its segmented copolyester poly(butylene succinate)‐block‐poly(propylene glycol)(PBSP) by means of differential scanning calorimetry, polarized light microscopy, and wide angle X‐ray diffraction. Avrami equation was used to describe the isothermal crystallization kinetics. For nonisothermal crystallization studies, the Avrami equation modified by Jeziorny, and the model combining Avrami equation and Ozawa equation were employed. The results showed that the introduction of poly(propylene glycol) soft segment led to suppression of crystallization of PBS hard segment. The melting behavior of the isothermally and nonisothermally crystallized samples was also studied. Results showed that the isothermally crystallized samples exhibited two melting endotherms, whereas only one melting endotherm was shown after nonisothermal crystallization. The spherulitic morphology of PBSP and wide angle X‐ray diffraction showed that the polyether segments were excluded from the crystals and resided in between crystalline PBS lamellae and mixed with amorphous PBS. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Summary: Poly(ethylene 2,6‐naphthalate) (PEN) can crystallize either from the glassy state or from the melt state. When crystallized from the glassy state, the sample was quenched from the melt in liquid nitrogen and then annealed at certain crystallization temperatures. When crystallized from the melt state, the sample was cooled to a preset temperature from the melt and then annealed for a certain time. The crystal modifications, morphologies and melting behaviors of PEN were investigated by means of wide‐angle X‐ray diffraction (WAXD), polarized optical microscopy (POM), small‐angle light scattering (SALS) and differential scanning calorimetry (DSC). The results show that an α crystal modification of PEN was obtained when PEN crystallized from the glassy state, whilst a β crystal modification was obtained when PEN crystallized from the melt state at a higher temperature. An hedritic morphology of PEN crystal was obtained with only one melting peak observed in DSC curves when PEN was crystallized at a higher temperature from either the glassy state or the melt state. The α crystal modification could also be obtained when PEN was crystallized at a lower temperature from the melt. Spherulitic or banded spherulitic morphologies of PEN crystals, exhibiting multiple melting peaks in DSC curves, were observed when PEN was crystallized at a lower temperature. The multiple melting behaviors of PEN crystals may be associated with spherulitic structures composed of lamellae of varying thickness.

WAXD patterns of PEN isothermally crystallized from different states.  相似文献   


7.
The melting behaviour of melt‐crystallized nylon 10,12 was investigated by differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction (WAXD). The results show that all nylon 10,12 crystals obtained under various conditions, including isothermal, non‐isothermal and stepwise crystallization, and also after partial melting or annealing, show multiple melting behaviour. It was found that each melting endotherm has a different origin. The highest melting peak corresponds to melting of the recrystallized material while the other melting endotherms are related to melting of lamellae with different thicknesses developing under different crystallization conditions. The equilibrium melting point of nylon 10,12 was also firstly estimated to be about 206 °C. © 2001 Society of Chemical Industry  相似文献   

8.
Wide‐angle X‐ray scattering and differential scanning calorimetry measurements have been conducted on seven random copolymers of propylene with ethylene in order to study the γ phase formation as a function of the comonomer content. The lamellar morphology of the samples was also investigated by small‐angle X‐ray scattering. The content of the γ phase was found to go through a maximum with crystallization temperature and to increase with comonomer concentration, up to a point (ethylene ≥6.5 wt%) where the latter parameter became less influential. The multiple melting endotherms behaviour of the samples was studied by DSC and temperature‐controlled diffractometric techniques. The attribution of the DSC peaks to the different isotactic polypropylene polymorphs that form in these conditions was confirmed. The results obtained permitted us to ascertain that, in the experimental conditions chosen, some further formation of crystallites takes place during the quenching to room temperature after the crystallization isotherm. In this phase, the chains organize themselves in stacks with thin lamellae, forming a distinct population with respect to those formed on isothermal crystallization. The melting of the thinner lamellae determines a convergence of the two populations into just one, still retaining an organization in stacks, that gradually disappears until complete melting of the material. Copyright © 2004 Society of Chemical Industry  相似文献   

9.
Multiple melting characteristics of a highly isotactic polypropylene (iPP) were studied by means of differential scanning calorimetry (DSC). Double melting characteristics were observed on melting iPP crystallized isothermally at temperatures ranging from 110 to 140°C. iPP crystallized below and above 125°C exhibited different double melting characteristics from each other. For iPP crystallized below 125°C, the single melting peak split into two peaks during slow DSC heating scans without changing the total crystallinity in the polymer. On the other hand, the double melting endotherm of iPP crystallized above 125°C seemed to come from two preexisting crystal fractions having different Tm. There existed an optimum annealing temperature range where the five-minute annealing of iPP raised Tm of the polymer significantly. The treatment also increased the crystallinity of iPP crystallized isothermally at 110°C by 12%.  相似文献   

10.
The influence of cooling rates on the thermal behavior and solid‐state morphologies of polyhydroxyalkanoates have been investigated. The thermal behavior was studied by differential scanning calorimetry (DSC). The crystal structures (~ Å), lamellar (tens of nanometers), fibrillar (several hundred nanometers), and spherulitic (~ μm) morphologies of poly (3‐hydroxybutyrate) (PHB) and the copolymers of poly (3‐hydroxybutyric acid‐co‐3‐hydroxyvaleric acid) (PHBV) and poly (3‐hydroxybutyric acid‐co‐3‐hydroxyhexanoic acid) (PHBHx) crystallized under different cooling rates were studied using simultaneous small angle X‐ray scattering (SAXS) and wide angle X‐ray scattering, simultaneous ultra small angle X‐ray scattering (USAXS) and SAXS, and polarized optical microscopy, respectively. The experimental results showed that the lamellar and spherulitic morphologies depended strongly on cooling rates. However, there was little influence of cooling rates on the crystal structures. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
The structure and thermal properties of polyamide‐1010 (PA1010), treated at 250°C for 30 min under pressures of 0.7–2.5 GPa, were studied with wide‐angle X‐ray diffraction (WAXD), infrared (IR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Crystals were formed when the pressures were less than 1.0 GPa or greater than 1.2 GPa. With increasing pressure, the intensity of the diffraction peak at approximately 24° was enhanced, whereas the peak at approximately 20° was depressed. The triclinic crystal structure of PA1010 was preserved. The highest melting temperature of the crystals obtained in this work was 208°C for PA1010 treated at 1.5 GPa. Crosslinking occurred under pressures of 1.0–1.2 GPa. Only a broad diffraction peak centered at approximately 20° was observed on WAXD patterns, and no melting and crystallization peaks were found on DSC curves. IR spectra of crosslinked PA1010 showed a remarkable absorption band at 1370 cm?1. The N? H stretching vibration band at 3305 cm?1 was weakened. Crystallized PA1010 had a higher thermal stability than crosslinked PA1010, as indicated on TGA curves by a higher onset temperature of decomposition. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2522–2527, 2002  相似文献   

12.
Poly(ethylene 2,5‐furandicarboxylate) (PEF) is an emerging bio‐based polymer with interesting thermal and barrier properties. In this study, the melting behavior of PEF was investigated in situ by means of simultaneous wide and small angle X‐ray scattering (WAXS and SAXS) measurements coupled with DSC measurements. This study gives the first evidence of what happens from a structural point of view during the multiple melting behavior of PEF, which is composed of three distinct events, taking into account the nature of the initial crystalline phase present. The first result is that the α′ form, induced at low crystallization temperature, does not undergo any phase transformation upon heating revealing its stable character. Second, the comparison of the SAXS and WAXS results with the DSC ones showed that the multiple melting behavior observed is attributed to a melting–recrystallization–melting process. Third, this work also definitely shows that the low amplitude melting endotherm observed in the DSC thermograms is ascribed to the melting of secondary crystals. Finally, SAXS‐WAXS results led to the conclusion that the secondary crystals cannot be depicted by the commonly accepted lamellar insertion model. Another microstructural representation of these secondary crystals is proposed. In this model, the secondary crystals consist of bundles of macromolecules, which formed small crystalline entities located between the primary crystalline lamellae stacks. POLYM. ENG. SCI., 59:1667–1677 2019. © 2019 Society of Plastics Engineers  相似文献   

13.
Polyamide 1010/single‐walled carbon nanotube (PA1010/SWNT) nanocomposites prepared by melt compounding were treated under a pressure of 2.0 GPa and at three different temperatures (250, 300 and 350 °C) for 30 min. Then, all the samples were naturally cooled to room temperature from the melt prior to release of the applied pressure. The melting temperature and crystallinity of high pressure crystallized samples were shifted to a high value after the treatment temperatures under pressure. The infrared spectrum of the high pressure crystallized samples showed a considerable improvement of crystalline order, a closer packing of the polymer chains due to the shorter N? C bond length, and the presence of a large proportion of free N? H groups resulting from antiparallel chains in flat zigzag conformation. Wide‐angle X‐ray diffraction measurements indicated that the high pressure gave rise to an increase in crystallite dimensions as well as to a decrease of the distance between the crystal planes bonded by the hydrogen bond (100) planes and by the van der Waals force (010) planes. Scanning electron microscope images showed that denser texture, thicker covering layers on the tubes and regular cubic sugar‐like crystals with a lateral length of about 1.5 µm could be detected on the fracture surface of PA1010/SWNT nanocomposites crystallized under pressure. Copyright © 2012 Society of Chemical Industry  相似文献   

14.
The double melting behavior of syndiotactic polystyrene (sPS) with β′-form crystallites was systematically investigated by several analytical techniques, including differential scanning calorimetry (DSC), polarized light microscopy (PLM), transmission electron microscopy (TEM), as well as wide-angle and small-angle X-ray scattering (WAXD, SAXS). For preventing the possible chain re-organization during intermediate melting, a high-energy electron beam (e-beam) radiation was carried out on the melt-crystallized samples to chemically cross-link the amorphous chains between lamellar crystals. The WAXD intensity profiles of the irradiated sPS samples revealed that no crystal transformation took place, and the crystallinity fraction remained unchanged for a received dose up to 2.4 MGy. As the received dose was increased, however, the high melting temperature peak was gradually diminished and finally disappeared after 1.8 MGy e-beam radiation, suggesting that the double melting phenomenon was mainly attributed to the melting/re-crystallization/re-melting behavior. The re-crystallization mechanism of sPS samples was studied using DSC and PLM to reveal the effects of heating rate and annealing temperature on the Avrami exponent and re-crystallization rate constant. In addition, the lamellar morphologies of the re-crystallized samples were also investigated by means of SAXS and TEM. With increasing heating rate or annealing temperature, the derived Avrami exponent was slightly decreased from 1.4 to 1.1; in comparison, the re-crystallization rate showed a shallow maximum at a rate of 10 °C/min, but it became evidently reduced at high annealing temperatures. Based on the morphological observations, we proposed that the re-crystallization of β-form sPS crystals involved with the presence of broad lamellar thickness distribution as well as abundant irregular loose folding chains on the lamellar surfaces, which became tightened and crystallized into the un-melted lamellae when the neighboring thinner lamellae trapped in-between were melted. Thus, the high melting temperature is dependent on the average thickness of lamellae consisting of the un-melted lamellae developed initially and thickened ones associated with re-crystallization.  相似文献   

15.
The structure and properties of bio‐based polyamide 109 (PA109) after treatment with superheated water (140 °C ≤ T ≤ 280 °C) were investigated and characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, wide‐angle X‐ray diffraction, scanning electron microscopy and small‐angle X‐ray scattering. Below 170 °C, the hydrothermal treatment was considered to be a physical process, which exerted an annealing effect on PA109. It led to an increase in melting temperature, lamellar thickness and crystallinity, while the macromolecular structure, crystal structure and the order of crystalline regions were not affected. Above 170 °C, complete melting/dissolution of PA109 occurred with partial hydrolysis. Due to the high temperature and long reaction time, the hydrolysis reaction became more and more prominent, and the resin was completely hydrolyzed into oligomers at 280 °C. Also, above 170 °C, the hydrothermal treatment was accompanied by a chemical process and the melting temperature and molecular weight decreased progressively. Notably, the crystal structure was not altered, but the degree of perfection of crystals and the order of crystalline regions were broken, especially above 200 °C. The hydrolytic degradation reaction was significantly affected by temperature, while both time and the water to polyamide ratio were secondary factors which influenced it to a minor extent. The process could be considered as a typical nucleophilic substitution reaction which takes place step by step inducing the molecular weight to decrease gradually. Overall, this study provides a ‘green’ route for the processing, recycling and treatment of environmentally friendly polyamides based on hydrothermal treatment technology. © 2019 Society of Chemical Industry  相似文献   

16.
To clarify the thermal degradation mechanisms of uniaxially drawn poly(vinylidene fluoride) (PVDF) films, variations due to annealing in the polymeric structures of the films were investigated using the small‐angle X‐ray scattering (SAXS) and Fourier transform infrared (FTIR) spectroscopy. The films were composed of lamellar crystals that were stacked perpendicular to the stretch direction. Although the crystallinity of the films decreased during annealing in the temperature range above the preannealing temperature, the lamellar structure was maintained even after the annealing process. There are two kinds of irreversible relaxation mechanisms during the annealing process of the films, including both a decrease in crystallinity within the lamellae and also thickening of the lamellae. A significant lamella thickening effect was observed when the films were annealed above ~ 100°C. FTIR spectra suggested some disordered structures are developed during thickening of the lamellae. Furthermore, a long‐range periodic structure was formed in the films that were annealed above the melting temperature of PVDF. The polymeric structures formed during the fabrication process (including high‐order structures and disorders in molecular conformation) were clarified as having a significant influence on the annealing behavior of ferroelectric PVDF films. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
To study the effect of organophilic clay concentration on nonisothermal crystallization, poly(L ‐lactic acid) (PLLA)/montmorillonite (MMT) nanocomposites were prepared by mixing various amounts of commercial MMT (Cloisite® 30B) and PLLA. The effect of MMT content on melting behavior and crystal structure of nonisothermal crystallized PLLA/MMT nanocomposites was investigated by differential scanning calorimetry (DSC), small‐angle X‐ray scattering, and wide‐angle X‐ray diffraction (XRD) analyses. The study was focused on the effect of the filler concentration on thermal and structural properties of the nonisothermally crystallized nanocomposite PLLA/MMT. The results obtained have shown that at filler loadings higher than 3 wt %, intercalation of the clay is observed. At lower clay concentrations (1–3 wt %), exfoliation predominates. DSC and XRD analysis data show that the crystallinity of PLLA/MMT composites increases drastically at high clay loadings (5–9 wt %). In these nanocomposites, PLLA crystallizes nonisothermally in an orthorhombic crystal structure, assigned to the α form of PLLA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
The melting behaviors and crystal structures of a long alkyl chain polyamide and nylon 18 18, were investigated under annealing and isothermal crystallization conditions. Nylon 18 18 showed multiple melting peaks in differential scanning calorimetry (DSC) thermograms depending on thermal history of the samples. The origin of the multiple melting peaks may be a result of a melting and recrystallization mechanism during DSC scans. Wide‐angle X‐ray diffraction patterns showed two new diffraction peaks, which appeared at 0.44 and 0.37 nm, and are characteristic peaks of α‐form (triclinic structure) of even–even nylons with increasing annealing temperature. The intensities of these peaks increased, and they split further apart, with elevated annealing temperatures. The solid‐state 15N CP/MAS NMR spectra of the nylon 18 18 samples that had been quenched and annealed also confirmed the α‐crystalline form. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Crystallization in polyamide 6 (nylon 6) fibers during annealing was studied in detail by following the changes that occurred in the neighborhood of crystalline relaxation temperatures, by using wide‐ and small‐angle X‐ray scattering and differential scanning calorimetry (DSC). Two distinct crystallization regimes were observed depending on whether annealing was carried out below or above onset of crystalline relaxation at ~190°C. In fibers annealed below 190°C, minor melting peaks were followed by exothermic transitions. These were attributed to ~1.5% (by weight) of microcrystals formed during annealing that melt and recrystallize during the DSC scan. These microcrystals are nucleated from unoriented amorphous chains between the lamellar stack within a fibril, and are shown to account for the observed increase in the crystalline orientation and decrease in permeability. Fibers annealed above 190°C did not show the exotherm and had significantly fewer microcrystals. The crystallization in this regime was attributed to the growth of existing lamellae, as evidenced by the increase in crystallite size, crystalline density, crystalline orientation, lamellar spacing, and lamellar intensity. The changes at annealing temperatures >190°C are accompanied by increased dyeability, indicative of more open amorphous regions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 447–454, 2006  相似文献   

20.
Pristine and functionalized multiwalled carbon nanotubes (MWNTs) were used to fabricate polyamide 6 (PA6) composites through melt blending. The functionalized MWNTs were obtained by grafting 1,6‐hexamethylenediamine (HMD) onto the pristine MWNTs to improve their compatibility with PA6 matrix. The effect of MWNTs on the isothermal crystallization and melting behavior of PA6 was investigated by differential scanning calorimetry (DSC) and X‐ray diffraction (XRD). The Avrami and Lauritzen–Hoffmann equations are used to describe the isothermal crystallization kinetics. The values of the Avrami exponent found for neat PA6, the pristine MWNTs/PA6 and functionalized MWNTs/PA6 composite samples are about 4.0, 1.7, and 2.3, respectively. The activation energies are determined by the Arrhenius method, which is lower for the composites, ?320.52 KJ/mol for pristine MWNTs/PA6 and ?293.83 KJ/mol for functionalized MWNTs/PA6, than that for the neat PA6 (?284.71 KJ/mol). The following melting behavior reveals that all the isothermally crystallized samples exhibit triple melting endotherms at lower crystallization temperature and double melting endotherms at higher crystallization temperature. The multiple melting endotherms are mainly caused by the recrystallization of PA6 during heating. The resulting equilibrium melting temperature is lower for the composites than for neat PA6. In addition, polarizing microscopy (PLM) and small angle light scanning (SALS) were used to study the spherulite morphology. The results show that the MWNTs reduce the spherulite radius of PA6. This reduction is more significant for pristine MWNTs. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号