首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The POB/PBT copolyesters, designated B28, B46, B64, and B82, were prepared from p‐acetoxybenzoic acid (PAB) and poly(butylene terephthalate) (PBT). The polymeric products obtained were then ground and subjected to solid‐state polymerization under vaccum for 4 h. The melting and crystallization behaviors of these copolyesters haven been studied by differential scanning calorimetry (DSC). In the DSC scan of the POB‐rich composition, the endothermic peak shows obscurely, and enthalpy of fussion becomes small due to the change in the crystalline morphology from isotropic to anisotropic. In general, the melting point of the copolyester is increased by the solid‐state polymerization reaction. Also, thermogravimetric analysis (TGA) were performed with these samples obtained. It was found that the decomposition temperature (Td ) is increased as the POB content is increased. Effects of composition and solid‐state polymerization on the decomposition temperature of copolyesters are also discussed. The crystalline morphology of copolyester was investigated with a Zeiss polarized optical microscope. It was found that the POB/PBT copolyesters with 60 mol % POB was shown to be highly anisotropic. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2363–2368, 2000  相似文献   

2.
Poly(butylene terephthalate‐co‐2‐methyl‐ethylene terephthalate) (PBT/MET) was synthesized by incorporating 1,2‐propandiol(1,2‐PDO) into PBT chains. The molar composition and chemical structure of PBT/MET copolyesters were confirmed by means of FT‐IR and 1H‐NMR. To investigate the effect of 1,2‐PDO on the thermal properties of PBT/MET copolyesters, the copolymerizations were carried out by varying various contents of MET units, and the prepared materials were evaluated by differential scanning calorimetry and thermogravimetric analysis. Results suggested that with the increase of the content of 1,2‐PDO, the amount of crystallinity and the melting temperature decline, while the glass transition temperature increases and the copolyesters become more transparent and brittle with respect to PBT homopolymer. In addition, the Tg‐composition and Tm‐composition data are well subjected to the Wood equation and Flory's equation, respectively. All these copolyesters are found to consist of the general trend displayed by copolymers reported elsewhere. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
Copolyesters of p,p′‐bibenzoic acid, dimer acid, and an alkylene glycol are prepared by melt polycondensation of of dimethyl p,p′‐bibenzoate, dimer acid, and an alkylene glycol. The copolyesters are characterized by the inherent viscosity, FTIR, proton NMR, DSC, polarized microscopy, and X‐ray diffraction. The polymer composition and sequence distribution of the copolyesters can be seen from the NMR spectra. The copolyesters exhibit a degree of randomness of about 1, indicating that they are random copolymers. The glass‐transition temperature (Tg) and the melting point (Tm) of the copolyesters are found from the DSC heating curves. When the content of the flexible dimer acid unit increases, the Tg of the copolyesters decreases significantly. The copolymerization effect decreases the crystallinity and the Tm of the copolyesters. It can be seen from the DSC, polarized microscopy, and X‐ray diffraction data that some copolyesters derived from 1,6‐hexanediol and 1,5‐pentanediol exhibit a monotropic smectic phase. As the molar content of the dimer acid unit increases, the isotropic–mectic transition temperature and the smectic order decreases significantly. The liquid crystallinity is completely destroyed at certain molar contents of the dimer acid unit. The smectic order of the copolyesters derived from 1,6‐hexanediol is significantly higher than that of the copolyesters derived from 1,5‐pentanediol, and it is described as an odd–even effect. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 750–758, 2003  相似文献   

4.
Poly(butylene terephthalate) (PBT) copolyesters modified with seven compositions of p‐acetoxybenzoic acid (PABA) ranging from 10 to 70 mol % were prepared. The X‐ray diffraction patterns, the polarizing microscopy behaviors, and thermal analysis showed that the modified PBT contained more PABA homopolymer units (PABA–PABA) than PBT–PABA units in the copolyesters. On increasing PABA mole percenage, PBT crystallinity decreased and thermal stability increased. It was found that although the PBT copolyesters did not exhibit a clear liquid crystalline texture like the copolyester of poly(ethylene terephthalate) modified with PABA did, the PBT copolyester containing 70 mol % of PABA exhibited the typical shear thinning behavior of a liquid crystalline polymer. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1085–1095, 2001  相似文献   

5.
Random copolyester namely, poly(ethylene terephthalate‐co‐sebacate) (PETS), with relatively lower molecular weight was first synthesized, and then it was used as a macromonomer to initiate ring‐opening polymerization of l ‐lactide. 1H NMR quantified composition and structure of triblock copolyesters [poly(l ‐lactic acid)‐b‐poly(ethylene terephthalate‐co‐sebacate)‐b‐poly(l ‐lactic acid)] (PLLA‐PETS‐PLLA). Molecular weights of copolyesters were also estimated from NMR spectra, and confirmed by GPC. Copolyesters exhibited different solubilities according to the actual content of PLLA units in the main chain. Copolymerization effected melting behaviors significantly because of the incorporation of PETS and PLLA blocks. Crystalline morphology showed a special pattern for specimen with certain composition. It was obvious that copolyesters with more content of aromatic units of PET exhibited increased values in both of stress and modulus in tensile test. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
Characterization of poly(butylene adipate‐co‐succinate) (PBAS)/poly(butylene terephthalate) (PBT) copolyesters resulting from the intermolecular ester‐exchange reaction between molten PBAS and PBT have been analyzed using 1H‐NMR spectroscopy, differential scanning calorimetry, wide‐angle X‐ray diffraction, and total organic carbon lab analyzer. Using the assignment of proton resonance due to homogeneous and heterogeneous dyads, the average block lengths were investigated over the entire range of copolymer composition. A decrease in melting temperature was observed with the increase of a terephthalate unit in the composition. The result of X‐ray diffraction curve matches well with that of average block length and thermal property. When a rich component is crystallized, the poor component is excluded completely in a crystal formation. The biodegradability in copolyesters also depended on the terephthalate unit in the composition and average block length of the aromatic unit. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 593–608, 1999  相似文献   

7.
8.
Blending of thermotropic liquid crystalline polyesters (LCPs) with conventional polymers could result in materials that can be used as an alternative for short fiber‐reinforced thermoplastic composites, because of their low melt viscosity as well as their inherent high stiffness and strength, high use temperature, and excellent chemical resistance and low coefficient of expansion. In most of the blends was used LCP of 40 mol % of poly(ethylene terephthalate) (PET) and 60 mol % of p‐acetoxybenzoic acid (PABA). In this work, blends of several copolyesters having various PABA compositions from 10 to 70 mol % and poly(butylene terephthalate) (PBT) were prepared and their rheological and thermal properties were investigated. For convenience, the copolyesters were designated as PETA‐x, where x is the mol % of PABA. It was found that PET‐60 and PET‐70 copolyesters decreased the melt viscosity of PBT in the blends and those PBT/PETA‐60 and PBT/PETA‐70 blends showed different melt viscosity behaviors with the change in shear rate, while blends of PBT and PET‐x having less than 50 mol % of PABA exhibited totally different rheological behaviors. The blends of PBT with PETA‐50, PETA‐60, and PETA‐70 showed the morphology of multiple layers of fibers. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1797–1806, 1999  相似文献   

9.
A series of poly(ethylene terephthalate‐co‐isophthalate) copolyesters containing upto 50%‐mole of isophthalic units were prepared by polycondensation from ethylene terephthalate and ethylene isophthalate fractions of linear oligomers containing from 5 to 6 repeating units in average. The polyesters were obtained in good yields and with high‐molecular‐weights. The microstructure of the copolyesters was studied as a function of reaction time by 13C‐NMR showing that a random distribution of the comonomers was achieved since the earlier stages of polycondensation. The melting temperature and enthalpy of the copolyesters decreased with the content of isophthalic units so that copolyesters containing more than 25% of these units were amorphous. Isothermal crystallization studies made on crystalline copolyesters revealed that the crystallization rate of copolyesters decreased with the content in isophthalic units. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Various poly(alkylene p,p′-bibenzoate-co-adipate)s were prepared by melt polycondensation of dimethyl-p,p′-bibenzoate, adipic acid, and an alkylene glycol. The copolyesters were characterized by inherent viscosity, FTIR, proton NMR, DSC, polarized microscopy, and X-ray diffraction. The polymer composition and sequence distribution of the copolyesters can be seen from NMR spectra. The copolyesters exhibit a degree of randomness of about 1, indicating that they are random copolymers. From the DSC data, the glass transition temperature (Tg) and melting point (Tm) of the copolyesters can be detected. When the content of the flexible adipate unit increases, the Tg of copolyesters decreases significantly. The type of alkylene glycol used also affects the Tg to some extent. The copolymerization effect decreases crystallinity and the Tm of the copolyesters. The DSC, polarized microscopy, and X-ray diffraction data show that some copolyesters derived from 1,6-hexanediol exhibit a monotropic smectic phase. As the molar fraction of adipate unit in diacid units, x, is more than 0.4, the liquid crystallinity is completely destroyed. © 1997 John Wiley & Sons, Inc. J Appl Polm Sci 65:893–900, 1997  相似文献   

11.
Aliphatic‐aromatic copolyesters of poly(butylene adipate‐co‐butylene terephthalate) have been synthesized by polycondensation. Molecular weights and thermal properties have been measured. The four samples of copolyesters, with aromatic contents, varying from 40 to 60 mol %, were investigated by 1H‐NMR spectroscopy to determine copolymers composition and microstructure. For all samples, the biodegradation experiment was carried out in compost, to study copolyesters degradation behavior. Using 1H‐NMR, we noticed that the average sequence length and content of the aliphatic unit decrease and those of the aromatic unit increase. The molecular weights of the samples distinctly drop after composting. In all degraded samples, the trace of growing microorganisms was found on their surfaces by scanning electron microscopy. In combination with the results, the degradation behavior has been studied in the middle stage of copolyester degradation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2643–2649, 2007  相似文献   

12.
Thermotropic liquid‐crystalline polymers (TLCPs) have aroused considerable interest due to their attractive properties as high‐performance materials. Significant research attention has been devoted to investigating the relationship among monomer structures, syntheses and end‐use properties of TLCPs. The study reported here concerns the preparation, characterization and melt spinning of novel copolyesters containing two different flexible units together with two different aromatic units in the polymer chains. A range of copolyesters based on p‐hydroxybenzoic acid (p‐HBA), m‐hydroxybenzoic acid, p‐hydroxyphenylacetic acid and poly(ethylene terephthalate) were synthesized. The liquid crystallinity, thermal properties and degrees of crystallinity of these copolyesters were investigated using hot‐stage polarized light microscopy, differential scanning calorimetry, thermogravimetry and wide‐angle X‐ray diffraction. Copolyester fibres were characterized using scanning electron microscopy. The copolyesters were melt‐processable, thermally stable and could be processed above their melting temperatures without degradation. The degree of crystal structure was found to depend upon the content of p‐HBA. The fibres prepared showed that polymer chains had a well‐developed fibrillar structure. Novel TLCPs containing flexible units in the main chain were synthesized and characterized. Copolyesters containing p‐HBA units ranging from 55 to 70 mol% exhibited phase‐separated liquid‐crystalline morphology, appropriate melting temperatures and high thermal stability for melt processing. Copyright © 2010 Society of Chemical Industry  相似文献   

13.
A series of novel poly(trimethylene terephthalate‐co‐1,4‐cyclohexylene dimethylene terephthalate) (PTCT) with various compositions were synthesized by melt polycondensation of 1,3‐propanediol, 1,4‐cyclohexanedimethanol and dimethyl terephthalate. The resulting copolyesters were characterized using 13C and 1H nuclear magnetic resonance. The average length of both trimethylene terephthalate (TT) and cyclohexylene dimethylene terephthalate (CT) sequences varies from 1 to 10, and the chain structure is statistically random. The crystallization was investigated using wide angle X‐ray diffractometer (WAXD) and differential scanning calorimeter. The WAXD patterns can be divided in two groups according to the composition: copolyesters with less than 35 mol % CT content exhibit PTT‐type lattice, and those with CT unit content higher than 42 mol % crystallize with the PCT‐type lattice. The crystallizability of CT sequence is higher than that of TT sequence. Thermodynamic analysis shows that the comonomer is excluded from the PTT‐type or PCT‐type crystal of the copolyesters. The thermal decomposition temperature of copolyesters increases with increasing CT content, and their thermal stability is improved as compared to that of PTT. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
A series of co[poly(ethylene terephthalate-p-oxybenzoate)] thermotropic copolyesters with various compositions were prepared by the copolymerization of either poly(ethylene terephthalate) polymer (PET) or its oligomer (OET) as moiety (II) and p-acetoxy-benzoic acid (POB) as moiety (I). The polymeric products obtained were then subjected to solid-state polymerization. The glass and melting transitions of the copolyesters obtained have been studied by differential scanning calorimetry (DSC). Effects of composition and solid-state polymerization on DSC are discussed. The melting point of copolyesters possesses a higher value if the PET polymer is used as PET moiety in the copolyesters. In the DSC scan of the POB rich composition, the endothermic peak shows obscurely and enthalpy of fusion becomes small due to the change in the crystalline morphology from isotropic to anisotropic. In general, the melting point of copolyesters is increased by the solid-state polymerization reaction. It is also found that both the melting temperature and enthalpy of fusion of the copolyesters can be increased simultaneously by the solid-state polymerization reaction only when the composition of POB/PET is 80/20. This phenomenum at this composition may be attributed to the annealing effect caused by the randomness of two moiety units on the backbone chain of copolyesters and the increased molecular weight as well. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
A series of aliphatic biodegradable poly (butylene succinate‐co‐ethyleneoxide‐co‐DL ‐lactide) copolyesters were synthesized by the polycondensation in the presence of dimethyl succinate, 1,4‐butanediol, poly(ethylene glycol), and DL ‐oligo(lactic acid) (OLA). The composition, as well as the sequential structure of the copolyesters, was carefully investigated by 1H‐NMR. The crystallization behaviors, crystal structure, and spherulite morphology of the copolyesters were analyzed by differential scanning calorimetry, wide angle X‐ray diffraction, and polarizing optical microscopy, respectively. The results indicate that the sequence length of butylene succinate (BS) decreased as the OLA feed molar ratio increasing. The crystallization behavior of the copolyesters was influenced by the composition and sequence length of BS, which further tuned the mechanical properties of the copolyesters. The copolyesters formed the crystal structures and spherulites similar to those of PBS. The incorporation of more content of ethylene oxide (EO) units into the copolyesters led to the enhanced hydrophilicity. The more content of lactide units in the copolyesters facilitated the degradation in the presence of enzymes. The morphology of the copolyester films after degradation was also studied by the scanning electron microscopy. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
A series of co[poly(ethylene terephthalate-p-oxybenzoate)] thermotropic copolyester with different compositions were prepared by the copolymerization of either poly(ethylene terephthalate) (PET) polymer or its oligomer with p-acetoxy-benzoic acid. The polymeric products were subjected to solid-state polymerization for various time intervals. Effects of composition ratio and solid-state polymerization time on X-ray diffraction behavior were investigated. It is found that the effect of transesterification induced by solid-state polymerization causes an increase in crystallinity with the copolyesters having high mol % of p-oxybenzoic acid (POB) moiety and causes a decrease in crystallinity with the copolyesters having high mol % of PET moiety. In general, the crystallinity of copolyesters is first increased and then decreased as solid-state polymerization time proceeds. However, the crystallinity of copolyester having POB/PET = 80/20 composition is increased generally at 4-h solid-state polymerization. It is also found that the crystallinity of copolyesters is decreased by quenching. The copolyester based upon either PET oligomer with 4-h solid-state polymerization or PET polymer with 8-h solid-state polymerization shows the most similar X-ray diffraction pattern with that of Eastman 10109. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
A series of biodegradable aliphatic‐aromatic copolyester, poly(butylene terephthalate‐co‐butylene adipate‐co‐ethylene terephthalate‐co‐ethylene adipate) (PBATE), were synthesized from terephthalic acid (PTA), adipic acid (AA), 1,4‐butanediol (BG) and ethylene glycol (EG) by direct esterification and polycondensation. The nonisothermal crystallization behavior of PBATE copolyesters was studied by the means of differential scanning calorimeter, and the nonisothermal crystallization kinetics were analyzed via the Avrami equation modified by Jeziorny, Ozawa analysis and Z.S. Mo method, respectively. The results show that the crystallization peak temperature of PBATE copolyesters shifted to lower temperature at higher cooling rate. The modified Avrami equation could describe the primary stage of nonisothermal crystallization of PBATE copolyesters. The value of the crystallization half‐time (t1/2) and the crystallization parameter (Zc) indicates that the crystallization rate of PBATE copolyesters with more PTA content was higher than that with less PTA at a given cooling rate. Ozawa analysis was not suitable to study the nonisothermal crystallization process of PBATE copolyesters, but Z.S. Mo method was successful in treatingthis process. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

18.
Taking advantage of a melt polycondensation process, a series of copolyesters composed of pure terephthalate acid (PTA), ethylene glycol (EG), and 1,3‐propanediol (1,3‐PDO) were synthesized. The component, molecular weight, molecular weight distribution, and thermal properties of the copolymers were characterized. The results show that the contents of trimethylene terephthalate (TT) units in the resulting copolyesters are higher than PDO compositions in original diol. Oligomer content in the copolyesters varies with the compositions and attains a minimum value when the TT ingredient is 49.52 mol %. The glass transition temperature (Tg) of the copolyesters varies from 78.5°C for PET (polyethylene terephthalate) to 43.5°C for PTT (polytrimethylene terephthalate) and decreases monotonically with the components. The copolyesters are amorphous copolymers when TT content is in the range of 32.4–40.8 mol %, as calculated from the melting enthalpy (ΔHm) measured via differential scanning calorimetry. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1511–1521 2006  相似文献   

19.
A series of thermotropic copolyesters were synthesized by direct thermal melt polycondensation of p‐acetoxybenzoic acid (PHB) with transp‐acetoxycinnamic acid (PHC). The dynamic thermogravimetric kinetics of the copolyesters in nitrogen were analyzed by four single heating‐rate techniques and three multiple heating‐rate techniques. The effects of the heating rate, copolyester composition, degradation stage, and the calculating techniques on the thermostability and degradation kinetic parameters of the copolyesters are systematically discussed. The four single heating‐rate techniques used in this work include Friedman, Freeman–Carroll, Chang, and the second Kissinger techniques, whereas the three multiple heating‐rate techniques are the first Kissinger, Kim–Park, and Flynn–Wall techniques. The decomposition temperature of the copolyesters increases monotonically with increasing PHB content from 40 to 60 mol %, whereas their activation energy exhibits a maximal value at the PHB content of 50 mol %. The decomposition temperature, activation energy, the order, and the frequency factor of the degradation reaction for the thermotropic copolyester with PHB/PHC feed ratio of 50/50 mol % were determined to be 374°C, 408 kJ/mol, 7.2, and 1.25 × 1029 min?1, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 445–454, 2004  相似文献   

20.
A novel 2‐oxazoline‐benzoxazine (POB) was synthesized with 2‐(hydroxylphenyl)‐2‐oxazoline, 1,3,5‐triphenylhexahydro‐1,3,5‐triazine and paraformaldehyde. The chemical structure of the monomer was confirmed by FTIR, 1H‐NMR, 13C‐NMR, and MS. The curing behavior of the monomer was studied by DSC and FTIR, and the ring opening reaction of the monomer was found to occur from 187.5°C. The results of DMA and TGA demonstrated that the thermal properties of polymer for POB monomer (P‐m) are better than polymer for POB precursor (P‐p), because that the oligomer in benzoxazine precursor decreased the perfection of the polymer's network structure; it was also found that the thermal properties of P‐m and P‐p are much better than the common polybenzoxazine and the composite material of benzoxazine and 2‐oxazoline. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci , 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号