共查询到20条相似文献,搜索用时 15 毫秒
1.
FeCl3 coordinated by triphenylphosphine was first used as the catalyst in the 1,1,2,2‐tetraphenyl‐1,2‐ethanediol‐initiated reverse atom transfer radical polymerization of acrylonitrile. A FeCl3/triphenylphosphine ratio of 0.5 not only gave the best control of the molecular weight and its distribution but also provided a rather rapid reaction rate. The rate of polymerization increased with increasing polymerization temperature, and the apparent activation energy was calculated to be 62.4 kJ/mol. When FeCl3 was replaced with CuCl2, the reverse atom transfer radical polymerization of acrylonitrile did not show prominent living characteristics. To demonstrate the active nature of the polymer chain end, the polymers were used as macroinitiators to advance the chain‐extension polymerization in the presence of a CuCl/2,2′‐bipyridine catalyst system via a conventional atom transfer radical polymerization process. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 4041–4045, 2007 相似文献
2.
Well‐defined polystyrenes with an α‐C(CH3)2(CN) and an ω‐chlorine atom end‐groups, and narrow polydispersity (Mn = 3000–4000 g mol−1, Mw/Mn = 1.3–1.4) have been synthesized by a radical polymerization process using 2,2′‐azobisisobutyronitrile(AIBN)/FeCl3/PPh3 initiation system. When the ratio of [St]0:[AIBN]0:[FeCl3]0:[PPh3]0 is 200:1:4:12 at 110 °C, the radical polymerization is ‘living’, but the molecular weight of the polymers is not well‐controlled. The polymerization mechanism belongs to a reverse atom transfer radical polymerization (ATRP). Because the polymer obtained is end‐functionalized by a chlorine atom, it can then be used as a macroinitiator to perform a chain extension polymerization in the presence of CuCl/2,2′‐bipyridine catalyst system via a conventional ATRP process. The presence of a chlorine atom as an end‐group was determined by 1H NMR spectroscopy. © 2000 Society of Chemical Industry 相似文献
3.
The reverse atom‐transfer radical polymerization (RATRP) technique using CuCl2/2,2′‐bipyridine (bipy) complex as a catalyst was applied to the living‐radical polymerization of acrylonitrile (AN). 1,1,2,2‐Tetraphenyl‐1,2‐ethanediol (TPED) was first used as the initiator in this copper‐based RATRP initiation system. A CuCl2 to bipy ratio of 0.5 not only gives the best control of molecular weight and its distribution, but also provides rather rapid reaction rate. The rate of polymerization increases with increasing the polymerization temperature, and the apparent activation energy was calculated to be 53.2 kJ mol?1. Because the polymers obtained were end‐functionalized by chlorine atoms, they were used as macroinitiators to proceed the chain extension polymerization in the presence of CuCl/bipy catalyst system via a conventional ATRP process. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3529–3533, 2007 相似文献
4.
Copolymerization of styrene (St) and methyl methacrylate (MMA) was carried out using 1,1,2,2‐tetraphenyl‐1,2‐bis (trimethylsilyloxy) ethane (TPSE) as initiator; the copolymerization proceeded via a “living” radical mechanism and the polymer molecular weight (Mw) increased with the conversion and polymerization time. The reactivity ratios for TPSE and azobisisobutyronitrile (AIBN) systems calculated by Finemann–Ross method were rSt = 0.216 ± 0.003, rMMA= 0.403 ± 0.01 for the former and rSt= 0.52 ± 0.01, rMMA= 0.46 ± 0.01 for the latter, respectively, and the difference between them and the effect of polymerization conditions on copolymerization are discussed. Thermal analysis proved that the copolymers obtained by TPSE system showed higher sequence regularity than that obtained by the AIBN system, and the sequence regularity increased with the content of styrene in copolymer chain segment. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1474–1482, 2001 相似文献
5.
FeCl3 coordinated by iminodiacetic acid (IMA) was Changed used for the first time as the catalyst in azobisisobutyronitrile‐initiated reverse atom‐transfer radical polymerization (ATRP) of acrylonitrile (AN). An FeCl3 to IMA ratio of 1:2 not only gave the best control of molecular weight and its distribution but also provided a rather rapid reaction rate. The effects of solvents on the polymerization of AN were also investigated. The rate of the polymerization in N,N‐dimethylformamide (DMF) was faster than in propylene carbonate or toluene. The molecular weight of polyacrylonitrile agreed reasonably well with the theoretical molecular weight in DMF. The rate of polymerization increased with increasing polymerization temperature and the apparent activation energy was calculated to be 54.8 kJ mol−1. The reverse ATRP of AN did not show obvious living characteristics with CuCl2 instead of FeCl3. Copyright © 2005 Society of Chemical Industry 相似文献
6.
The combination of radical‐promoted cationic polymerization, atom transfer radical polymerization (ATRP) and click chemistry was employed for the efficient preparation of poly(cyclohexene oxide)‐block‐polystyrene (PCHO‐b‐PSt). Alkyne end‐functionalized poly(cyclohexene oxide) (PCHO‐alkyne) was prepared by radical‐promoted cationic polymerization of cyclohexene oxide monomer in the presence of 1,2‐diphenyl‐2‐(2‐propynyloxy)‐1‐ethanone (B‐alkyne) and an onium salt, namely 1‐ethoxy‐2‐methylpyridinium hexafluorophosphate, as the initiating system. The B‐alkyne compound was synthesized using benzoin photoinitiator and propargyl bromide. Well‐defined bromine‐terminated polystyrene (PSt‐Br) was prepared by ATRP using 2‐oxo‐1,2‐diphenylethyl‐2‐bromopropanoate as initiator. Subsequently, the bromine chain end of PSt‐Br was converted to an azide group to obtain PSt‐N3 by a simple nucleophilic substitution reaction. Then the coupling reaction between the azide end group in PSt‐N3 and PCHO‐alkyne was performed with Cu(I) catalysis in order to obtain the PCHO‐b‐PSt block copolymer. The structures of all polymers were determined. Copyright © 2010 Society of Chemical Industry 相似文献
7.
Gang Wang Xiulin Zhu Jianhong Wu Jian Zhu Xinrong Chen Zhenping Cheng 《应用聚合物科学杂志》2007,106(2):1234-1242
A well‐defined photoresponsive polymethacrylate containing azo chromophores, poly[6‐(4‐phenylazophenoxy)hexylmethacrylate] [Poly(PPHM)], was prepared with azo‐based monofunctional and difunctional initiators via atom transfer radical polymerization in the presence of CuCl/1,1,4,7,10,10‐hexamethyltriethylenetetramine. The polymerizations with first‐order kinetics were well controlled with theoretical expected molecular weight and narrow molecular weight distributions in two initiation systems. The UV absorption intensities of the poly (PPHM)s increased with increasing molecular weight of the poly(PPHM)s in all cases. The 80‐nm surface‐relief gratings with 2.7% efficient diffraction formed on the poly (PPHM) film surface were obtained with a linearly polarized krypton laser with 10 min of irradiation at a recording beam intensity of 188 mW/cm2 with a wavelength of 413.1 nm. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 相似文献
8.
Poly(n‐butyl methacrylate) (PBMA)‐b‐polystyrene (PSt) diblock copolymers were synthesized by emulsion atom transfer radical polymerization (ATRP). PBMA macroinitiators that contained alkyl bromide end groups were obtained by the emulsion ATRP of n‐butyl methacrylate with BrCH3CHCOOC2H5 as the initiator; these were used to initiate the ATRP of styrene (St). The latter procedure was carried out at 85°C with CuCl/4,4′‐di(5‐nonyl)‐2,2′‐bipyridine as the catalyst and polyoxyethylene(23) lauryl ether as the surfactant. With this technique, PBMA‐b‐PSt diblock copolymers were synthesized. The polymerization was nearly controlled; the ATRP of St from the macroinitiators showed linear increases in number‐average molecular weight with conversion. The block copolymers were characterized with IR spectroscopy, 1H‐NMR, and differential scanning calorimetry. The effects of the molecular weight of the macroinitiators, macroinitiator concentration, catalyst concentration, surfactant concentration, and temperature on the polymerization were also investigated. Thermodynamic data and activation parameters for the ATRP are also reported. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2123–2129, 2005 相似文献
9.
The controllability of the atom transfer radical polymerization of methyl methacrylate in the polar solvent N,N‐dimethylformamide and the nonpolar solvent xylene with 4‐(chloromethyl)phenyltrimethoxysilane as an initiator and with CuCl/2,2′‐bipyridine and CuCl/4,4′‐di(5‐nonyl)‐2,2′‐bipyridine as catalyst systems was studied. Gel permeation chromatography analysis established that in the nonpolar solvent xylene, much better control of the molecular weight and polydispersity of poly(methyl methacrylate) was achieved with the CuCl/4,4′‐di(5‐nonyl)‐2,2′‐bipyridine catalyst system than with the CuCl/2,2′‐bipyridine as catalyst system. In the polar solvent N,N‐dimethylformamide, unlike in xylene, the polymerization was more controllable with the CuCl/2,2′‐bipyridine catalyst system than with the CuCl/4,4′‐di(5‐nonyl)‐2,2′‐bipyridine catalyst system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2751–2754, 2007 相似文献
10.
Well‐defined poly(methyl methacrylate) (PMMA) with an α‐isobutyronitrile group and an ω‐bromine atom as the end groups was synthesized by the microemulsion polymerization of methyl methacrylate (MMA) at 70°C with a 2,2′‐azobisisobutyronitrile/CuBr2/2,2′‐bipyridine system. The conversion of the polymerization reached 81.9%. The viscosity‐average molecular weight of PMMA was high (380,000), and the polydispersity index was 1.58. The polymerization of MMA exhibited some controlled radical polymerization characteristics. The mechanism of controlled polymerization was studied. The presence of hydrogen and bromine atoms as end groups of the obtained PMMA was determined by 1H‐NMR spectroscopy. The shape and size of the final polymer particles were analyzed by scanning probe microscopy, and the diameters of the obtained particles were usually in the range of 60–100 nm. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3670–3676, 2006 相似文献
11.
Living/controlled radical autopolymerization of styrene in the presence of CuCl2 and 2,2′‐bipyridine
The bulk autopolymerization of styrene (St) was successfully conducted in the presence of CuCl2 and 2,2′‐bipyridine (bpy) at 110 and 130°C. We found that this polymerization was a living/controlled radical polymerization at a [St]0/[CuCl2]0/[bpy]0 ratio of 54:1:2.5. The resulting number‐average molecular weights linearly increased with conversion, and the polydispersity indices were very narrow (<1.5). The polymerization rate increased with temperature. Increasing the ratios (i.e., 129:1:2.5, 259:1:2.5, and 386:1:2.5) led to a decrease in the ability to control the autopolymerization of St, even uncontrolled polymerization (i.e., 643:1:2.5). The analysis of end groups by 1H‐NMR indicated that the spontaneous generation of radicals from St were generated by a Mayo‐type process, and this living/controlled radical polymerization might have underwent a reverse atom‐transfer radical polymerization process. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1532–1538, 2003 相似文献
12.
Afsaneh Nabifar Neil T. McManus Eduardo Vivaldo‐Lima Liliane M.F. Lona Alexander Penlidis 《加拿大化工杂志》2008,86(5):879-892
A comprehensive experimental investigation of nitroxide‐mediated radical polymerization (NMRP) of styrene using 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) as controller is presented. Polymerizations with a bimolecular initiator (benzoyl peroxide; BPO) were carried out at 120 and 130°C, with TEMPO/BPO molar ratios ranging from 0.9 to 1.5. Results indicate that increasing temperature increases the rate of polymerization while the decrease in molecular weights is only slight. It was also observed that increasing the ratio of TEMPO/BPO decreased both the rate of polymerization and molecular weights. Probably for the first time in the history of such investigations, the paper contains a comprehensive database, appropriate for parameter estimation in aid of future modelling studies, since it comes from a systematic data collection containing independent replication. 相似文献
13.
Graft copolymerization of vinyl monomers onto chitosan and other natural polymers using atom transfer radical polymerization has only recently attracted interest. This technique could potentially provide new ways to utilize this abundant natural polymer. It would enable a wide variety of molecular designs to afford novel types of tailored hybrid materials composed of natural polysaccharides and synthetic polymers. In this work, a chitosan macroinitiator was prepared by the reaction of chitosan with 2‐bromo‐isobutyryl bromide, after the chitosan amino group had been protected as the imine. The aqueous grafting of methoxy capped (PEG 350) methacrylate onto chitosan is described. The kinetic study revealed a first order polymerization reaction. Polydispersities of about 1.25 were obtained. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 901–912, 2003 相似文献
14.
Chen Hou Rongjun Qu Chunnuan Ji Chunhua Wang Chengguo Wang 《Polymer International》2006,55(3):326-329
The reverse atom transfer radical polymerization (RATRP) technique using FeCl3/triphenyl‐phosphine (PPh3) complex as a catalyst was applied to the living radical polymerization of acrylonitrile (AN). A hexa‐substituted ethane thermal iniferter, diethyl 2,3‐dicyano‐2,3‐diphenylsuccinate (DCDPS), was first used as the initiator in this iron‐based RATRP initiation system. A FeCl3 to PPh3 ratio of 1:3 not only gives the best control of molecular weight and its distribution but also provides a rather rapid reaction rate. The rate of polymerization increases with increasing the polymerization temperature and the apparent activation energy was calculated to be 54.9 kJ mol?1. Because the polymers obtained were end‐functionalized by chlorine atoms, they were used as macro‐initiators to proceed the chain extension polymerization in the presence of an FeCl2/PPh3 catalyst system via a conventional ATRP process. Copyright © 2005 Society of Chemical Industry 相似文献
15.
Multi‐arm star polystyrenes with hyperbranched polyester (HP3) core were prepared by atom transfer radical polymerization (ATRP). The structures of the polymers were investigated with FTIR and 1H NMR. GPC results showed that the resultant polymers had relatively broad polydispersity indices that arouse from the macromolecular initiator (HP3‐Br). The thermal properties were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). DSC analysis indicated that polystyrene star polymers had only the glass transition temperatures (Tg), which changes with the weight ratio of multi‐functional macroinitiator‐to‐monomer. In addition, these star polymers could form the spherical micelles in the selected solvent (THF/n‐hexane). © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 728–733, 2006 相似文献
16.
Poly(N‐acryloxysuccinimide) (polyNAS) with narrow molecular weight distributions (MWD) applicable for the preparation of well‐defined glycoconjugate polyacrylamides were successfully prepared by atom transfer radical polymerization (ATRP). The structures of polyNAS were characterized by 1H‐NMR and GPC. GPC results showed that the molecular weight polydispersity indices (PDI) range from 1.17 to 1.29. The molecular weights could be calculated based on 1H‐NMR results but GPC results of polyNAS by using 0.01M LiBr/DMF did not give accurate molecular weights, probably because of the complex interaction in the system. The effects of free N‐hydroxysuccimide produced in the polymerization processes on the free‐radical concentrations and apparent initiation efficiencies of ATRP were discussed. Well‐defined glycoconjugate polyacrylamides (i.e., with narrow molecular weight distributions and designed glycoconjugate degrees) were prepared by substituting N‐oxysuccimide units with galactosamine followed by reaction of ethanolamine. The galactose conjugate degrees were determined by 1H‐NMR and the total substitutions of N‐oxysuccimides were verified by 1H‐NMR and FTIR. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 189–194, 2005 相似文献
17.
Akira Hirao Kenji Sugiyama Akira Matsuo Yuji Tsunoda Takumi Watanabe 《Polymer International》2008,57(4):554-570
This review presents firstly the synthesis of various dendritic hyperbranched polymers with well‐defined structures by generation‐based growth methodologies using living/controlled polymerization. Secondly, the synthesis of dendritic hyperbranched poly(methyl methacrylate)s (PMMAs) and their functionalized block copolymers using a novel iterative methodology is described. The methodology involves a two‐reaction sequence in each iterative process: (a) a linking reaction of α‐functionalized living anionic PMMA with tert‐butyldimethylsilyloxymethylphenyl (SMP) groups with benzyl bromide (BnBr)‐chain‐end‐functionalized polymer and (b) a transformation reaction of the SMP groups into BnBr functions. This reaction sequence is repeated several times to construct high‐generation (maximum seventh generation) dendritic hyperbranched polymers. Similar branched architectural block copolymers have also been synthesized by the same iterative methodology using other α‐functionalized living anionic polymers. Surface structures of the resulting dendritic hyperbranched block copolymers composed of PMMA and poly(2‐(perfluorobutyl)ethyl methacrylate) segments have been characterized using X‐ray photoelectron spectroscopy and contact angle measurements. Solution behaviors of dendritic hyperbranched PMMAs with different generations and branch densities are discussed based on their intrinsic viscosities, g′ values and Rh values. Copyright © 2007 Society of Chemical Industry 相似文献
18.
Styrene oligomers (Mn, 2500–3000 g/mol) with low polydispersity index and containing peroxidic groups within their structure were synthesized using a novel trifunctional cyclic radical initiator, diethylketone triperoxide (DEKTP), through nitroxide‐mediated radical polymerization (NMRP), using OH‐TEMPO. During the synthesis of the polystyrene (PS) oligomers, camphorsulfonic acid (CSA) was used to inhibit the thermal autoinitiation of styrene at the evaluated temperatures (T = 120–130°C). The polymerization rate, which can be related to the slope of the plot of monomer conversion with reaction time, was monitored as a function of OH‐TEMPO, DEKTP, and CSA concentrations. The experimental results showed that all the synthesized polymers presented narrow molecular weight distributions, and the monomer conversion and the molecular weight of the polymers increased as a function of reaction time. Under the experimental conditions, T = 130°C, [DEKTP] = 10 mM, and [DEKTP]/[OH‐TEMPO] = 6.5, PS oligomers containing unreacted O? O sites in their inner structure were obtained. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
19.
Well‐defined comblike atactic polystyrene functionalized with hydroxyl groups was synthesized via living/controlling radical polymerization promoted by metallocene complexes in the presence of poly(phenyl glycidyl ether)‐co‐formaldehyde as the initiator and Sn as a reducing agent. The effect of the polymerization conditions, such as the ratio of initiator to monomer, temperature, and polymerization time, and the structure of the metallocene complex on the polymerization process were investigated. The resulting polymers were characterized by gel permeation chromatography, multiangle laser light scattering, 1H‐NMR, and 13C‐NMR. The results show that the polymer had a narrow molecular weight distribution in the range 1.1–1.4 and the number‐average molecular weight of the polymer linearly depended on the monomer conversion within the polymerization timescale, which confirmed that living radical polymerization characteristics prevailed in the polymerization process. Both the number of arms and the number of hydroxyl groups in each polymer molecule were about four, which suggested that they arose from the epoxy functional groups of the initiator. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
20.
Mircea Teodorescu Mihai Dimonie Constantin Draghici Gabriel Vasilievici 《Polymer International》2004,53(12):1987-1993
Poly(ethylene oxide)‐block‐polystyrene (PEO–PSt) block copolymers were prepared by radical polymerization of styrene in the presence of iodoacetate—terminated PEO (PEO‐I) as a macromolecular chain‐transfer agent. PEO‐I was synthesized by successively converting the OH end‐group of α‐methoxy ω‐hydroxy PEO to chloroacetate and then to the iodoacetate. The chain‐transfer constant of PEO‐I was estimated from the rate of consumption of the transfer agent versus the rate of consumption of the monomer (Ctr, PEO‐I = 0.23). Due to the involvement of degenerative transfer, styrene polymerization in the presence of PEO‐I displayed some of the characteristics of a controlled/‘living’ process, namely an increase in the molecular weight and decrease of polydispersity with monomer conversion. However, because of the slow consumption of PEO‐I due to its low chain‐transfer constant, this process was not a fully controlled one, as indicated by the polydispersity being higher than in a controlled polymerization process (1.65 versus < 1.5). The formation of PEO–PSt block copolymers was confirmed by the use of size‐exclusion chromatography and 1H NMR spectroscopy. Copyright © 2004 Society of Chemical Industry 相似文献