首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 8 毫秒
1.
The effects of three series of thermoplastic polyurethane‐based (PU) low‐profile additives (LPA) with different chemical structures and molecular weights on the glass transition temperatures and mechanical properties for thermoset polymer blends made from styrene (ST), unsaturated polyester (UP), and LPA have been investigated by an integrated approach of static phase characteristics‐cured sample morphology‐reaction conversion‐property measurements. The three series of PU used were made from 2,4‐tolylene di‐isocyanate (2,4‐TDI) and varied diols, namely polycaprolactone diol (PCL), poly(diethylene adipate) diol (PDEA), and poly(propylene glycol) diol (PPG), respectively, while the two UP resins employed were synthesized from maleic anhydride (MA) and 1,2‐propylene glycol (PG) with and without modification by phthalic anhydride (PA). Based on the Takayanagi mechanical models, factors that control the glass transition temperature in each phase region of cured samples, as identified by the method of thermally stimulated currents (TSC), and mechanical properties will be discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 558–568, 2000  相似文献   

2.
Three series of self‐synthesized poly(vinyl acetate)‐based low‐profile additives (LPAs) with different chemical structures and molecular weights, including poly(vinyl acetate), poly(vinyl chloride‐co‐vinyl acetate), and poly(vinyl chloride‐co‐vinyl acetate‐co‐maleic anhydride), were studied. Their effects on the volume shrinkage characteristics and internal pigmentability for low‐shrink unsaturated polyester (UP) resins during cure were investigated. The experimental results were examined with an integrated approach involving measurements of the static phase characteristics of the ternary styrene/UP/LPA system, the reaction kinetics, the cured sample morphology, and microvoid formation by using differential scanning calorimetry, scanning electron microscopy, optical microscopy, and image analysis. Based on the Takayanagi mechanical model, factors leading to both good volume shrinkage control and acceptable internal pigmentability for the molded parts were explored. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3336–3346, 2003  相似文献   

3.
The effects of reactive poly(vinyl acetate)‐block‐poly(methyl methacrylate) (PVAc‐b‐PMMA) and poly(vinyl acetate)‐block‐polystyrene (PVAc‐b‐PS) as low‐profile additives (LPA) on the volume shrinkage characteristics and internal pigmentability for low‐shrink unsaturated polyester resins (UP) during the cure at 30°C were investigated. These reactive LPAs, which contained peroxide linkages in their backbones, were synthesized by suspension polymerizations, using polymeric peroxides (PPO) as initiators. Depending on the LPA composition and molecular weight, the reactive LPA could lead to a reduction of cyclization reaction for UP resin during the cure, and would be favorable for the decrease of intrinsic polymerization shrinkage after the cure. The experimental results have been explained by an integrated approach of measurements for the static phase characteristics of the styrene (ST)/UP/LPA system, reaction kinetics, cured sample morphology, and microvoid formation by using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), optical microscopy (OM), and image analysis. Based on the Takayanagi mechanical model, factors leading to both a good volume shrinkage control and acceptable internal pigmentability for the molded parts have been explored. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 967–979, 2006  相似文献   

4.
Unsaturated polyester prepolymers were synthesized with different chemical compositions and molecular weights. Cloud‐point curves (CPC) were measured in St‐UP quasibinary solutions, showing UCST behavior in all cases. The miscibility of the first UP samples series in St comonomer was enhanced when AA chemical comonomer concentration in UP prepolymer increased. In the second series, UP prepolymer miscibility increased with the molecular weight up to a maximum and, after that, the miscibility decreased. A thermodynamic analysis of experimental CPCs was performed using the Flory‐Huggins (F‐H) theory for polydisperse polymer solutions. A simple relationship between the interaction parameter and the temperature inverse could fit the measured CPCs in wide concentrations and molecular weight ranges. In the temperature interval where this fit took place, the positive enthalpic contribution to the interaction parameters determined the miscibility dependence with temperature in both UP sample series. The St‐UP miscibility behavior was also correlated with UPs structural chemical parameters as: (a) the final HO? and HOOC? high polar groups concentration, (b) the chain backbone polar adipate and phthalate groups concentration, and (c) the UP size dependent mixing entropy. All these parameters are molecular weight dependent. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 6064–6073, 2006  相似文献   

5.
The effects of reactive poly(methyl methacrylate) (PMMA) and poly(vinyl acetate)‐block‐poly(methyl methacrylate) (PVAc‐b‐PMMA) as low‐profile additives (LPAs) on the glass‐transition temperature and mechanical properties of low‐shrink unsaturated polyester resin (UP) were investigated by an integrated approach of determining static phase characteristics, reaction kinetics, cured sample morphology, and property measurements. The factors that, according to Takayanagi mechanical models, control the glass‐transition temperature in each phase region of the cured samples, as identified by both the thermally stimulated currents method and dynamic mechanical analysis, and the mechanical properties are discussed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 867–878, 2006  相似文献   

6.
A commercially available bicyclo‐orthoester (BOE) was used as low‐shrinkage additive for cationic UV curing of epoxy resins. A high reactivity of BOE by ring‐opening homopolymerization has been observed under cationic UV curing conditions. The BOE and trimethylolpropane triglycidyl ether monomers are compatible and give rise to a cured copolymeric network, under UV irradiation, with a flexibilization increase by increasing the BOE content in the photocurable formulation. Shrinkage after photopolymerization shows a linear reduction by increasing the BOE content in the photocurable formulation; a volume expansion upon polymerization is reached in the presence of 50 wt% of the additive. Copyright © 2007 Society of Chemical Industry  相似文献   

7.
The effects of reactive poly(methyl methacrylate) (PMMA) and poly(vinyl acetate)‐block‐PMMA as low‐profile additives (LPAs) on the volume shrinkage characteristics and internal pigmentability for low‐shrink unsaturated polyester (UP) resins during curing at 110°C were investigated. These reactive LPAs, which contained peroxide linkages in their backbones, were synthesized by suspension polymerization with polymeric peroxides as initiators. Depending on the LPA composition and molecular weight, the reactive LPAs led to a considerable volume reduction or even to a volume expansion after the curing of styrene (ST)/UP/LPA ternary systems; this was attributed mainly to the expansion effects of the LPAs on the ST‐crosslinked polyester microgel structures caused by the reduction in the cyclization reaction of the UP resin during curing as well as to the repulsive forces between the chain segments of UP and LPAs within the microgel structures. The experimental results were explained by an integrated approach of measurements for the static phase characteristics of the ST/UP/LPA system, reaction kinetics, cured sample morphology, and microvoid formation with differential scanning calorimetry, scanning electron microscopy, optical microscopy, and image analysis. With the aid of the Takayanagi mechanical model, the factors leading to both a good volume shrinkage control and acceptable internal pigmentability for the molded parts were also explored. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 264–275, 2005  相似文献   

8.
The effects of three series of self‐synthesized poly(methyl methacrylate) (PMMA)‐based low‐profile additives (LPAs), including PMMA, poly(methyl methacrylate‐co‐butyl acrylate), and poly(methyl methacrylate‐co‐butyl acrylate‐co‐maleic anhydride), with different chemical structures and MWs on the miscibility, cured‐sample morphology, curing kinetics, and glass‐transition temperatures for styrene (ST)/unsaturated polyester (UP) resin/LPA ternary systems were investigated by group contribution methods, scanning electron microscopy, differential scanning calorimetry (DSC), and dynamic mechanical analysis, respectively. Before curing at room temperature, the degree of phase separation for the ST/UP/LPA systems was generally explainable by the calculated polarity difference per unit volume between the UP resin and LPA. During curing at 110°C, the compatibility of the ST/UP/LPA systems, as revealed by cured‐sample morphology, was judged from the relative magnitude of the DSC peak reaction rate and the broadness of the peak. On the basis of Takayanagi's mechanical models, the effects of LPA on the final cure conversion and the glass‐transition temperature in the major continuous phase of ST‐crosslinked polyester for the ST/UP/LPA systems was also examined. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3369–3387, 2004  相似文献   

9.
Unsaturated polyester resins (UPRs) are versatile compounds. However, their major drawback is the high shrinkage exhibited on curing. An attempt was made to reduce the shrinkage of UPRs without affecting other properties. In the present study a commonly used iso‐reactive UPR was modified by the addition of ethylene–vinyl acetate (EVA; subjected to controlled depolymerisation to obtain samples of various molecular weights), and was cured at room temperature. The peak exotherm temperature and gel time were both observed to decrease with an increase in EVA content. The composition incorporating 0.5% of depolymerised EVA1 (highest degree of branching) showed maximum improvement in tensile and flexural properties with the heat deflection temperature and impact properties remaining almost unaffected. A uniform dispersion for the UPR containing 0.5% of EVA1 was observed. Addition of EVA reduced the percentage shrinkage in the modified matrix. Incorporation of depolymerised EVA can be an attractive option for the reduction of shrinkage in UPRs. The advantage of using depolymerised EVA is that generated waste EVA can be depolymerised and reused for this application making it cost effective. Copyright © 2010 Society of Chemical Industry  相似文献   

10.
The shrinkage of unsaturated polyester (UP)/styrene (St) resins cured at low temperatures can be reduced by the presence of low-profile additives (LPAs). It is believed that the reaction-induced phase separation and the polymerization shrinkage in both the LPA-rich and UP-rich phases result in the formation of microvoids, which partially compensates the resin shrinkage. The relative reaction rate in the two phases plays an important role in shrinkage control. In this study, secondary monomers [such as divinylbenzene (DVB) and trimethylopropane trimethacrylate (TMPTMA)] and a co-promoter, 2,4-pentandione (2,4-P), were added into the UP/St/LPA resin systems to investigate their effect on the shrinkage control of resins cured at low temperatures. Dilatometery results showed that the addition of both TMPTMA and 2,4-P resulted in an earlier volume expansion during curing and better shrinkage control. The phase separation, reaction kinetics, and viscosity changes in the LPA-rich and UP-rich phases during curing were also investigated. The results confirmed that the increased reaction rate in the LPA-rich phase led to an earlier formation of microvoids and, consequently, less volume shrinkage of the cured resin. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 738–749, 2001  相似文献   

11.
Shrinkage is critical to the unsaturated polyester resin (UPR) composite materials. Shrinkage influences the surface appearance, thus leading to warpage, internal cracks, and depression on the surface of the composite materials' products. Some studies and technologies have been conducted to controll the shrinkage. In this study, we presented 2,2‐dimethyl malonate as an anti‐shrinkage agent, which was different from the previous thermoplastic macromolecular agents. The shrinkage level of the CaCO3/UPR matrix dropped to zero with 12% 2,2‐dimethyl malonate by mass of UPR. The bending strength of CaCO3/UPR matrix with 2,2‐dimethyl malonate was also higher than that with the same adding amount of commercial thermoplastic agents at the low‐shrinkage level (below 0.25%) and the micro‐shrinkage level (below 0.08%). A reaction including two stages was proposed on the supporting of DSC and FTIR investigations. From the analysis results, we deduced that the first stage of the reaction was the esterification between 2,2‐dimethyl malonate and UPR, which did not occur in the UPR containing general thermoplastic anti‐shrinkage agent, and the second stage was restraining the cross polymerization of UPR, same to the reaction processes of general macromolecular anti‐shrinkage agents. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Three series of self‐synthesized poly(vinyl acetate)‐based low‐profile additives (LPAs), including poly(vinyl acetate), poly(vinyl chloride‐co‐vinyl acetate), and poly(vinyl chloride‐co‐vinyl acetate‐co‐maleic anhydride), with different chemical structures and molecular weights were studied. Their effects on the glass‐transition temperatures and mechanical properties for thermoset polymer blends made from styrene, unsaturated polyester, and LPAs were investigated by an integrated approach of the static phase characteristics, cured sample morphology, reaction kinetics, and property measurements. Based on Takayanagi mechanical models, the factors that control the glass‐transition temperature in each phase region of the cured samples and the mechanical properties are discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3347–3357, 2003  相似文献   

13.
Castor oil‐based polyurethane (PU)–polyester nonwoven fabric composites were fabricated by impregnating the polyester nonwoven fabric in a composition containing castor oil and diisocyanate. The effects of different diisocyanates such as toluene‐2,4‐diisocyanate (TDI) and hexamethylene diisocyanate (HMDI) on the mechanical properties have been studied for neat PU sheets and their composites with polyester nonwoven fabric. Chemical resistance of the PU composites has been assessed by exposing the specimens to different chemical environments. Percentage water absorption of composites and neat PU sheets has been determined both at room temperature and in boiling water. Both TDI‐ and HMDI‐based PU composites showed a marginal improvement in tensile strength retention at 100°C heat ageing. Water sorption studies were carried out at different temperatures, viz, 30, 50, and 70°C, based on immersion weight gain method. From the sorption results, the diffusion (D) and permeation (P) coefficients of water penetrant have been calculated. Attempts were made to estimate the empirical parameters such as n, which suggests the mode of transport (non‐Fickian), and K, a constant which depends on the structural characteristics of the polymer in addition to its interaction in boiling water. The temperature dependence of the transport coefficients has been used to estimate the activation energy parameters for diffusion (ED) and permeation (Ep) processes from Arrhenius plots. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

14.
Yan-Jyi Huang  Lih-Der Chen 《Polymer》1998,39(26):7049-7059
The effects of three series of unsaturated polyester (UP) resins with different chemical composition or structure on the mechanical properties of three low-shrink UP resins containing thermoplastic polyurethane, poly(vinyl acetate) and poly(methyl methacrylate) respectively have been investigated by an integrated approach of static phase characteristics–cured sample morphology–reaction conversion–property measurements. The three series of UP resins synthesized include: maleic anhydride (MA)–neopentyl glycol (NPG)–diethylene glycol (DEG) types, with various molar ratios of NPG and DEG; MA–1,2-propylene glycol (PG) types with and without modification by a saturated dibasic aromatic anhydride or acid, such as phthalic anhydride (PA) or isophthalic acid; and MA–PA–PG types modified by a second glycol, such as DEG, 2-methyl-1,3-propanediol or NPG, to partially replace PG. Based on the Takayanagi mechanical models, the effects of glycol ratios, saturated dibasic aromatic acid modification, second glycol modification, C=C unsaturation of UP and molecular weight of UP on the mechanical properties will be discussed.  相似文献   

15.
The effects of three series of self‐synthesized poly(methyl methacrylate) (PMMA)‐based low‐profile additives (LPAs), including PMMA, poly(methyl methacrylate‐co‐butyl acrylate), and poly(methyl methacrylate‐co‐butyl acrylate‐co‐maleic anhydride) with different chemical structures and MWs on the volume shrinkage characteristics and internal pigmentability for low‐shrink unsaturated polyester (UP) resins during curing were investigated by an integrated approach of static phase characteristics of the ternary styrene (ST)/UP/LPA system, reaction kinetics, cured‐sample morphology, microvoid formation, and property measurements. The relative volume fraction of microvoids generated during the cure was controlled by the stiffness of the UP resin used, the compatibility of the uncured ST/UP/LPA systems, and the glass‐transition temperature of the LPAs used. On the basis of the Takayanagi mechanical model, the LPA mechanism on volume shrinkage control, which accounted for phase separation and microvoid formation, and factors leading to both a good volume shrinkage control and acceptable internal pigmentability for the molded parts are discussed. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3388–3397, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号