首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new self‐designed mechanochemical reactor, inlaid pan‐mill, was used in studying high density polyethylene (HDPE) and calcium carbonate (CaCO3) blends. The effects of CaCO3 on the crushing and structure of HDPE matrix and the properties of HDPE/CaCO3 blends were investigated. Scanning electron microscopy, Fourier transformed IR spectroscopy, dynamical mechanical testing analysis, capillary rheometer, and Instron material testing system were used to characterize the structure of HDPE and evaluate the properties of HDPE/CaCO3 blends. The introduction of calcium carbonate during milling improved milling efficiency, and time needed for each cycle was greatly reduced. Oxygen‐containing groups on HDPE chains, which were produced during milling, increased interfacial interactions and improved the dispersion and distribution of calcium carbonate particles in HDPE/CaCO3 blends. Rheological, thermal, and mechanical properties were also improved. The elongation at break of milled blends with high concentrations of calcium carbonate was significantly higher than that of unmilled blends. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1459–1464, 1999  相似文献   

2.
Waste crosslinked polyethylene (XLPE) was partially decrosslinked to obtain a thermoplastic recycled material through solid‐state mechanochemical milling with pan‐mill equipment at ambient temperature. The gel fraction and size exclusion chromatography measurements showed that the gel content of XLPE decreased remarkably with increasing cycles of mechanochemical milling, whereas the molecular weight of the sol fraction was not significantly reduced; this indicated the realization of partial decrosslinking during mechanochemical milling. Differential scanning calorimetry and X‐ray diffraction analysis showed that the melting temperature of decrosslinked polyethylene increased by 3.5°C because the bigger crystallites size resulting from the higher mobility of the chain segment. The improved thermoplastic characteristic of XLPE after mechanochemical milling were confirmed by scanning electron microscopy and rheological measurement. The mechanical properties of recycled XLPE also achieved significant improvement after mechanochemical milling. Solid‐state mechanochemical milling is a cost‐effective, reliable, and environmentally friendly method for recycling XLPE at ambient temperature without any additional materials or chemicals. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
In this article, a solid‐state mechanochemical method based on a pan‐mill equipment was used to prepare 60 wt % loading of wood flour (WF) incorporated polypropylene (PP) wood–plastic composite (WPC) with good comprehensive performance. The particle size distribution, crystallization, microstructure, and properties of the prepared WPC were accordingly investigated. The results show that under co‐effects of the strong shear force field of pan milling and the compatibilization of PP grafted maleic anhydride (PP‐g‐MAH), the mixture of PP and WF is effectively pulverized and homogeneously mixed. Meanwhile, the WF particles are adequately activated by exposure of their characteristic functional groups, which is beneficial to the interfacial mechanochemical reaction. PP‐g‐MAH and PP prove to be in situ grafted onto WF particles surface during pan milling, thus resulting in the substantial enhancement in both the dispersion of the added WF fillers in PP matrix and the interfacial bonding. The mechanochemical effects of pan milling could also remarkably promote the heterogeneous nucleation effect of WF particles on PP crystallization and influence the dynamic mechanical behavior of composite. Compared with the unmilled and uncompatibilized composite, the milled and compatibilized WPC material possesses greatly enhanced mechanical performance and shows good application prospects. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43108.  相似文献   

4.
The structure and properties of HDPE/UHMWPE blends prepared through a pan‐milling reactor in solid state at ambient temperature were compared with the blends made by melt mixing. The changes of structure and properties of the blends were investigated by FTIR, melt flow index, mechanical properties, dynamic rheological measurement, DSC, and WAXD. DSC measurement illustrated that after pan‐milling treatment, the half‐width of the melting temperature became smaller. The more content of UHMWPE added in the blend, the more evident change was observed. Combined with the dynamic rheological analysis, it was proved that, the pan‐milling treatment can improve the compatibility of the HDPE/UHMWPE blends. X‐ray diffraction analysis showed that after pan‐milling treatment some ordered structure could be induced, but after heat treatment, the induced crystalline structure disappeared. The tensile properties of pan‐milled HDPE/UHMWPE blends also achieved improvement after pan milling treatment. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39916.  相似文献   

5.
The solid‐phase graft polymerization of hydroxymethyl acrylamide (HMA) onto polypropylene (PP) was realized by employing our self‐designed pan‐type milling equipment which has a unique and smart structure and can exert quite strong shear forces and pressure on the materials in between and break them down. When PP particles and HMA are pan‐milled together, the macromolecular radicals generated from the chain scission of PP under stress can initiate HMA to polymerize, forming the PP‐g‐HMA graft copolymer. The graft copolymers were characterized by chemical titration, FTIR, DSC, and contact angle measurement. The amount of grafted HMA depends on the HMA concentration, increase of the PP particles' surface area during pan milling, temperature, as well as rotation speed of the mill pan. The percentage of grafting reaches 2.43%. The particle‐size analysis showed that PP with a larger particle size favors the graft polymerization of HMA onto PP. DSC analysis demonstrated that the crystallinity of PP‐g‐HMA decreases as compared with PP due to the grafting of HMA onto PP. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2191–2197, 2000  相似文献   

6.
In this study, thermoplastic polyurethane (PU) composites were successfully prepared from waste cotton fabric (WCF) and reclaimed PU foam derived from the shoe manufacturing industry through melt mixing. A pan‐mill‐type mechanochemical reactor made in our laboratory was applied to determine the mechanochemical activation of WCF. The intramolecular and intermolecular hydrogen bonds of WCF could be broken up through pan milling because of the fairly strong shearing and squeezing forces. Moreover, the simultaneous reduction of particle size and the large increment of the specific surface area of pan‐milled WCF benefitted its dispersion and the interfacial adhesion with the PU matrix. Mechanochemically activated WCF could be used as a low cost but effective functional additive to enhance the melt processability and mechanical properties of PU/WCF composites. With the addition of 75‐phr WCF, the heat shrinkage of the melt‐reprocessed PU decreased sharply from its original 11.4 to 0.3%. Meanwhile, the tensile strength of the composites was enhanced from 10.3 to 23.2 MPa. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
The linear rheological properties of high‐density polyethylene (HDPE), polystyrene (PS), and HDPE/PS (80/20) blends were used to characterize their structural development during extrusion in the presence of ultrasonic oscillations. The master curves of the storage shear modulus (G′) and loss shear modulus (G″) at 200°C for HDPE, PS, and HDPE/PS (80/20) blends were constructed with time–temperature superposition, and their zero shear viscosity was determined from Cole–Cole plots of the out‐of‐phase viscous component of the dynamic complex viscosity (η″) versus the dynamic shear viscosity. The experimental results showed that ultrasonic oscillations during extrusion reduced G′ and G″ as well as the zero shear viscosity of HDPE and PS because of their mechanochemical degradation in the presence of ultrasonic oscillations; this was confirmed by molecular weight measurements. Ultrasonic oscillations increased the slopes of log G′ versus log G″ for HDPE and PS in the low‐frequency terminal zone because of the increase in their molecular weight distributions. The slopes of log G′ versus log G″ for HDPE/PS (80/20) blends and an emulsion model were used to characterize the ultrasonic enhancement of the compatibility of the blends. The results showed that ultrasonic oscillations could reduce the interfacial tension and enhance the compatibility of the blends, and this was consistent with our previous work. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3153–3158, 2004  相似文献   

8.
In this article, our self‐designed pan mill equipment was used to pulverize high‐density polyethylene (HDPE) to prepare its powder product. This pan mill based on three‐dimensional shear forces shows much better pulverization effects on ductile polymer materials when compared with conventional pulverizing equipment based on impact force, and it can mill original HDPE pellets (particle size: 3–4 mm) into fine powder (particle size: 75 μm) at ambient temperature. To further improve the pulverization efficiency to obtain ultrafine HDPE powder, sodium chloride (NaCl), serving as a grinding aid, was comilled with HDPE. Taking the advantages of the cutting and isolating effects of NaCl crystals, HDPE can be pulverized into ultrafine powder with the particle size below 10 μm. Another advantage of NaCl as a grinding aid lies in an easy removal process through water wash, thus conveniently separating from hydrophobic HDPE powder. This technology provides a novel and efficient method to prepare the ultrafine powder of those polymers with high ductility and low melt point, and shows a promise in future commercial application. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
Mechanical degradation of poly(vinyl chloride) (PVC) and mechanochemical copolymerization in poly(vinyl chloride)/methyl methylacrylate (PVC/MMA) systems were studied in an open mill machine. The effects of the mastication temperature, mastication time, and additives (oxygen, THF, or hydroquinone) on the mechanical degradation of PVC were investigated. The molecular weight of PVC decreased with increasing mastication time, and the efficiency of the mechanodegradation of PVC was lowered with increasing mastication temperature. The effects of the ratio of PVC to MMA, thin‐passage time, and initiator on mechanochemical copolymerization also were studied. The experimental results indicated that the degree of copolymerization increased with increasing thin‐passage times up to 45 times and then remained constant. There was a maximum degree of copolymerization at a ratio of 0.22 g/mL (PVC/MMA), and the efficiency of copolymerization always decreased with increasing time. The maximum degree and efficiency of copolymerization were 5.8 and 89%, respectively. The poly(vinyl chloride‐co‐methyl methylacrylate) copolymer can further improve the interfacial adhesion of PVC and PMMA. Thus it improves the mechanical properties of the PVC/CPE blend more effectively than pure PMMA. J. VINYL. ADDIT. TECHNOL. 12:42–48, 2006. © 2006 Society of Plastics Engineers.  相似文献   

10.
Composites made from ground tire rubber (GTR) and waste fiber produced in tire reclamation were prepared by mechanical milling. The effects of the fiber content, pan milling, and fiber orientation on the mechanical properties of the composites were investigated. The results showed that the stress‐induced mechanochemical devulcanization of waste rubber and the reinforcement of devulcanized waste rubber with waste‐tire fibers could be achieved through comilling. For a comilled system, the tensile strength and elongation at break of revulcanized GTR/fiber composites reached maximum values of 9.6 MPa and 215.9%, respectively, with 5 wt % fiber. Compared with those of a composite prepared in a conventional mixing manner, the mechanical properties were greatly improved by comilling. Oxygen‐containing groups on the surface of GTR particles, which were produced during pan milling, increased interfacial interactions between GTR and waste fibers. The fiber‐filled composites showed anisotropy in the stress–strain properties because of preferential orientation of the short fibers along the roll‐milling direction (longitudinal), and the adhesion between the fiber and rubber matrix was improved by the comilling of the fiber with waste rubber. The proposed process provides an economical and ecologically sound method for tire‐rubber recycling. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 4087–4094, 2007  相似文献   

11.
Synergistic effect of copper and multiwalled carbon nanotube on thermal and mechanical properties of high‐density polyethylene (HDPE)‐matrix composite was evaluated. Attrition mill was employed to prepare the hybrid powder. Reinforcing the polymer‐matrix was carried out using different contents of simultaneously (Sim) and separately (Sep) milled powders as hybrid fillers. X‐ray diffraction and microscopy results show different trends of particle size for Sep and Sim affected by both milling time and volume fraction ratio. Thermal characterization indicates that conductivity was enhanced by 90% and thermal expansion was reduced to 53% of neat HDPE. Young's modulus and tensile strength were improved by 7.8 and 1.22 times of neat HDPE, respectively. Also, characteristics of Sim‐reinforced composites exhibited better correlated relation with milling time compared with erratic behavior of Sep. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45397.  相似文献   

12.
刘丽超  王非  付丽  薛平  田静 《塑料》2020,49(2):36-39
采用毛细管流变仪,研究了超高分子量聚乙烯(UHMWPE)/高密度聚乙烯(HDPE)/纳米二氧化硅(SiO2)共混体系,及其对照组的流变行为和挤出过程中的不稳定流动现象,分析了共混物发生鲨鱼皮畸变和整体破裂的临界剪切应力和临界剪切速率的变化情况。结果表明,经过偶联剂改性的纳米SiO2粒子,在PE基质的共混体系中存在一定的界面黏附作用,降低了纳米共混体系的挤出胀大比,弹性特征减轻。这种界面相互作用限制了纳米共混材料在口模区域的黏性流动以及分子链离开口模后的构象恢复,降低了发生流动不稳定现象的临界剪切速率,发生鲨鱼皮畸变的临界剪切应力增大,整体破裂后,形成交替出现"鲨鱼皮-破裂"的振荡性变化外观。  相似文献   

13.
The use of recycled rubber in preparation of acoustic absorbent materials will help to combat the existing environmental problems of both waste disposal and noise pollution. The focus of this work is to investigate the influence of mechanochemical pretreatment of ground tire rubber (GTR) on the acoustic absorption properties of polyurethane (PU)/GTR foamed composites. GTR subjected to pan‐milling could be mechanochemically devulcanized by breaking up the crosslinked structures through inducing fairly strong shearing and compressing forces. The significant increase in sol fraction of GTR confirmed the partial devulcanization during pan‐milling. Moreover, thermal gravimetric analysis indicated that rubber content in the soluble part of GTR was also remarkably increased. The devulcanization increased flexible chains of the GTR particles, which could help to improve damping properties as well as acoustic absorption ability of the PU/GTR foamed composites. Dynamic mechanical analysis and acoustic absorption measurements well confirmed this hypothesis. The loss modulus and sound absorption coefficient of PU/GTR foamed composites were remarkably increased through the mechanochemical pretreatment of GTR. The mechanochemical pretreatment also enhanced foamability of the composites as revealed by cell morphology. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
In order to produce fine polymer powders, a special and unconventional cryogenic grinding system was established using liquid nitrogen, where a jet‐vortex mill was used as the grinding mill. The major feature of this grinding process is that heat generation during the grinding period was eliminated. The results suggest that this cryogenic grinding system may be suitable for studying the grinding properties of polymeric materials. It may also be helpful in understanding mechanochemistry, e.g., the t‐P‐T conditions for different mechanochemical processes under cryogenic conditions (where T is the temperature, and P the pressure of the gas mixture in the grinding chamber). In addition, an Elbow‐jet classifier was attached to the jet‐vortex mill so that fine, medium and coarse products of polymeric powders could be obtained simultaneously. Chitin, a type of renewable natural polymer, was ground in the system and XRD analysis of ground powders showed they displayed highly activated properties. Unlike a high‐energy mechanical milling process, such as a vibratory (bead) mill which requires more milling time t, the final properties of the ground polymer in the cryogenic grinding system were highly dependent on the temperature in the chamber of the jet‐vortex mill. The grinding results of chitin also showed that the minimum diameters of the ground polymer products are larger than several tens of micrometers (e.g., 75 μm). The developed method offers a new choice for the production of materials, polymer modification (e.g., degradation), and recycling of wasted rubber and plastic.  相似文献   

15.
Having been treated with coupling agent and pan‐milling, graphite is incorporated into HDPE to make a HDPE/graphite composite with enhanced thermal conductivity as well as good mechanical properties and processibility. This paper focuses on the study of mechanical properties, thermal stability and rheological behavior of HDPE/graphite composite. The experimental results show that with increase of the graphite content, Young's modulus of HDPE/graphite increases and the elongation at break and impact strength decrease. However, when the graphite content is 35% in HDPE/graphite, the elongation at break and impact strength still remain 22.4% and 85.8J/m. respectively. Also, the yield strength increases with the increase of the graphite content, and reaches the maximum at 55% graphite content, and reduces afterwards. The crystallization temperature and thermal stability of HDPE/graphite increase with the increase of the graphite content. The melt viscosity of the filled HDPE remains almost unchanged, but the shear sensitivity increases, and the temperature sensitivity decreases with the increase of the graphite content. By optimizing the experimental conditions, a HDPE/graphite composite with fairly good comprehensive properties such as enhanced thermal conductivity and stability, good mechanical properties, and processability could be prepared, which has potential application in the field of heat transfer.  相似文献   

16.
Mechanochemically devulcanized ground fluoroelastomer (FKM) was used as a low‐cost functional additive for the enhancement of the thermal stability of nitrile–butadiene rubber (NBR) vulcanizates. Without the use of any chemicals, the stress‐induced mechanochemical devulcanization of ground FKM was achieved through solid‐state mechanochemical milling at ambient temperature. The sol fraction of the ground FKM was increased from its original 1.4 to 19.8% after milling; this confirmed the realization of the mechanochemical devulcanization of FKM. Moreover, the oxygen‐containing polar groups on the surface of the mechanochemically milled FKM benefitted its interfacial adhesion with the polar NBR matrix. The curing characteristics and mechanical properties of the devulcanized, FKM‐filled NBR vulcanizates were investigated and compared with those of the untreated FKM‐filled NBR vulcanizates. The results show that the mechanical properties of the devulcanized FKM‐filled NBR vulcanizates were much better than those of the untreated FKM‐filled NBR vulcanizates. The presence of the reclaimed FKM significantly increased the onset degradation temperature of the NBR vulcanizates as a result of the improved polymer–filler interaction, uniform dispersion, and high thermal stability of the reclaimed FKM. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
采用单管毛细管流变仪,在不同温度下对高等级高密度聚乙烯(HDPE)管材树脂的熔体流动行为进行了研究,考察了剪切应力(τ<,w>)、剪切速率(γ)、挤出胀大及温度之间的关系.结果表明,高等级HDPE管材树脂熔体的剪切流动基本上服从幂律定律;熔体的表观黏度(η<,a>)对温度的依赖性大致上符合Arrhenius方程;η<,a>随τ<,w>和γ的增加而非线性减小;挤出胀大比随温度的升高而下降,随γ的增加呈非线性增大.  相似文献   

18.
In this study, different milling methods were used to prepare fine fiberglass‐resin powders (FRP) from waste printed circuit boards for the sake of obtaining high‐performance polypropylene (PP)/FRP composite. The processability and appearance of composites can be greatly improved through further milling of FRP; smaller average particle size and narrower particle size distribution can be obtained by pan milling as compared with jet milling and planetary ball milling. Mechanical test results showed that fine FRP prepared by pan milling could be used as reinforcing fillers in the PP composites and possessed better mechanical properties than other two milling methods. The mechanical properties was also confirmed by scanning electron microscopy studies which indicated that the dispersion of FRP and interfacial adhesion between fiberglass and PP matrix was much better by pan milling. Meanwhile, the heterogeneous nucleation effect of FRP by pan milling was more obvious. The above results indicate that solid‐state shear is a new method for producing fine FRP and high‐performance PP composites filled with FRP. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42494.  相似文献   

19.
LDPE/ultrahigh molecular weight polyethylene (UHMWPE) blends were prepared through a pan‐milling reactor in solid state at ambient temperature. The changes of structure and properties of LDPE/UHMWPE blends were investigated by melt flow index, mechanical properties, scanning electronic microscope (SEM), differential scanning calorimetry (DSC), and wide‐angle X‐ray diffraction. SEM photos showed that after pan‐milling treatment the dispersed approximately equiaxed UHMWPE particle became rodlike. DSC measurement illustrated that after pan‐milling treatment, the peaks of UHMWPE shift to lower temperatures while the peaks of LDPE kept stable. The more content of UHMWPE led to more evident shift. X‐ray diffraction analysis showed that the crystallinity of milled LDPE/UHMWPE blends decreased lightly, but the crystalline grain size decreased only for high content UHMWPE blends. The tensile properties of pan‐milled LDPE/UHMWPE blends also achieved significant improvement after pan milling treatment. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2487–2493, 2013  相似文献   

20.
Waste silicone cross‐linked polyethylene (Si‐XLPE) recycling effectively by using solid‐state shear mechanochemical (S3M) technology was investigated to make the better performance thermoplastic polyethylene. To make this thermoplastic material, the cross‐linked structures of waste Si‐XLPE that was consisted of the siloxane bonds must be de‐cross‐linked selectively instead of the destruction of the material main chains. The properties of recycled Si‐XLPE materials were investigated by gel fraction measurements, gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter, torque rheological measurements, scanning electron microscope (SEM) and thermogravimetric analyzer (TG). From the results, it could be seen that the cross‐linking bonds of the Si‐XLPE were destroyed selectively by S3M technology and the mechanochemical milling also played a significant role in improving the materials process‐ability and mechanical properties. Gel fraction measurements, GPC and FTIR showed that S3M technology could interrupt the cross‐linked structures of Si‐XLPE rather than the backbone chains by initiating the de‐cross‐linking reaction obviously; Torque rheological results further confirmed that the recycled Si‐XLPE materials gained better plastic characteristics and process‐ability after mechanochemical milling. Compared with the untreated Si‐XLPE, the tensile strength and elongation at break of Si‐XLPE samples after 10 cycles milling increased by 118.4% and 330.4%, respectively. J. VINYL ADDIT. TECHNOL., 25:149–158, 2019. © 2018 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号