首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Microcrystalline powders of yttrium barium copper oxide [YBa2Cu3O7] have been prepared by conventional ceramic preparation technique. The powder belong to orthorhombic symmetry with unit cell dimensions ‘a’=3.8214 Å, ‘b’=3.8877 Å and ‘c’=11.693 Å. XRD and SEM studies revealed that its particle size is in the micrometer range. Micro composites of polystyrene with different loading of yttrium barium copper oxide fillers were prepared by melt mixing in a brabender plasticorder at a rotor speed of 60 rpm. The lattice parameters of the constituent phases are the same in all the composites. Mechanical properties such as stress–strain behavior, Young's modulus, and tensile strength were studied as a function of filler loading. Addition of filler enhances the Young's modulus of the polymer. Because of the poor filler‐matrix adhesion, tensile strength and strain at break decreases with filler loading. To explore more carefully the degree of interfacial adhesion between the two phases, the results were analyzed by using models featuring an adhesion parameter. Finally experimental results were compared with theoretical predictions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
This paper presents the results of an experimental study on the behaviour of high‐performance concretes after high temperature exposure. The high temperature exposure is related to the potential risk of fire, and mechanical properties analysis is needed afterwards to assess the residual strength of the material. The results presented in the paper show the properties evolution of four concretes made with four different aggregate types: basalt, granite, dolomite and riverbed gravel. The mix compositions allow comparisons, because the cement paste and mortar compositions and their volumes remain the same for all the four concretes. Moreover, the aggregate particle size distribution was chosen to be quasi identical so that this factor does not affect the concrete behaviour. The decrease of tensile strength value with the increase of temperature is more pronounced than compressive strength reduction thus, the exponential and power function equations were proposed to describe ftT–fcT relationship. The change of modulus of elasticity in relative values is similar, although the initial values of modulus are different and correspond to the aggregate type. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Post‐extrusion solid‐state polymerization (SSP) of a commercial fully drawn filament yarn (FDY) of poly(ethylene terephthalate) was carried out at 220°C, 230°C, and 240°C for a duration of 30 min to 2 h under inert atmosphere. Molecular weight of the solid‐state polymerized polyester filaments was increased from 1.67 × 104 gm/mol to a maximum of 2.61 × 104 gm/mole for the sample subjected to 240°C for 2 h. The kinetics of the SSP in the highly oriented crystalline FDY polyester filaments was investigated using an empirical relation between initial molecular weight and time of SSP and was found to be greatly enhanced, compared to amorphous unoriented polyester chips. Though the free annealing (i.e., under no tension) of samples at high temperature during solid‐state polymerization had a detrimental effect on the orientation of the FDY yarn, the simultaneous increase in the molecular weight compensated the loss in mechanical properties to a great extent. Application of tension during SSP was found to improve the mechanical properties of the SSP yarn by a small value. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5113–5122, 2006  相似文献   

5.
A two‐step method is suggested to predict the Young's modulus of polymer nanocomposites assuming the interphase between polymer matrix and nanoparticles. At first, nanoparticles and their surrounding interphase are assumed as effective particles with core–shell structure and their modulus is predicted. At the next step, the effective particles are taken into account as a dispersed phase in polymer matrix and the modulus of composites is calculated. The predictions of the two‐step method are compared with the experimental data in absence and presence of interphase and also, the influences of nanoparticles size as well as interphase thickness and modulus on the Young's modulus of nanocomposites are explored. The predictions of the suggested model show good agreement with the experimental data by proper ranges of interphase properties. Moreover, the interphase thickness and modulus straightly affect the modulus of nanocomposites. Also, smaller nanoparticles create a higher level of modulus for nanocomposites, due to the large surface area at interface and the strong interfacial interaction between polymer matrix and nanoparticles.

  相似文献   


6.
《Ceramics International》2017,43(2):1747-1754
This paper presents the results of an experimental study on the microstructure, the thermal and the mechanical properties of a clay-based ceramic used in building applications. The X-ray tomography analysis showed a layered microstructure of clay with 200 µm sheets of porosity after the extrusion process. The gas release from the dehydration, dehydroxylation and decarbonation induced a 7 vol% formation of porosity during the heat treatment of the clay-based ceramic up to 850 °C. The porosity increase and the development of metakaolin led to a 38% decrease in the thermal conductivity. On the other hand, the Young's modulus of the clay-based ceramic was conserved due to the formation of smaller pores than the 200 µm sheets of porosity. The densification and the crystallization of amorphous phases also led to a 110% increase of the Young's modulus from 850 °C to 1050 °C. The Young's modulus of the clay-based ceramic was only decreased by the β→α quartz inversion of the cooling due to sand addition. Hence, this study provided a useful insight into how the microstructure of fired clay bricks can be specifically transformed by the porosity during the heat treatment to control the thermal and mechanical properties.  相似文献   

7.
《Ceramics International》2023,49(16):26191-26204
TiBCN coating is known as a hard, self-lubricant and wear resistant coating which can be applied on industrial tools to increase their working life time under severe wear conditions. In this paper, TiBCN coatings with different B/C ratios were applied on H13 steel using plasma-assisted chemical vapor deposition from BBr3, TiCl4, CH4, N2 and H2 reactants at 500 °C. The results signified that the introduction of B and C elements to TiN changed its preferred crystalline orientation from (200) to (111) and decreased crystal size from 12 to 9 nm as a result of the formation of amorphous phases which constrain grain growth. The addition of B and C altered the coating's nucleation and growth mechanisms and generated a strong surface etching agent of HBr which significantly changed surface morphology and roughness. Increasing flow ratio of CH4 to BBr3 from 0.125 to 0.25 influenced the coating's mechanical properties and increased coating's hardness from 18.1 to 23.2 GPa and Young's modulus from 296 to 334.7 GPa. Rising coating's C content remarkably improved its nano-wear resistance and the coating with the highest C content exhibited a wear volume of 1*10−19 m3 which was about 63% lower than that of TiN coating.  相似文献   

8.
Intelligent and multifunctional yarns (textiles) have attracted interest because of their high potential in applications such as flexible displays, batteries, or sensors. The main objective of our research was to obtain the flexible and electrically conducting yarn based on the conductive polymer and polyethylene terephtalate (PET) yarns. Among the conductive polymers, polyaniline (PANI) is considered as a promising material and is well adapted for modifications of textile structure because of its excellent environmental, thermal, and chemical stability. Chemical PANI coating on PET yarns was performed by absorption of yarns through PANI solution. The electrical, mechanical, and electro‐mechanical properties of PET conductive yarns prepared were investigated. The environmental effects on the electrical and mechanical properties of the obtained conductive yarns were also studied. These conductive yarns are expected to be used as fibrous sensors, connection devices in smart clothing, and for electromagnetic shielding applications. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1252–1256, 2006  相似文献   

9.
Anisotropic mechanical properties of KSr2Nb5O15 (KSN) crystals were investigated through first‐principles calculations based on density functional theory. These properties were experimentally verified via nanoindentation on textured KSN ceramics fabricated, using a reactive template grain growth method. Nanoindentation was performed in directions parallel and perpendicular to the [001] direction of samples consisting of highly oriented grains with tetragonal symmetry. Calculations revealed that Nb‐O yields a relatively strong covalent effect and Nb‐O octahedral distortions induce spontaneous polarization in the KSN crystal. The measured indentation modulus values concurred with the predictions, based on the calculated elastic constants, as indicated by an anisotropic ratio of ~10% between the 2 tested orientations. The hardness exhibited negligible anisotropy. However, the predictions revealed a pronounced anisotropy of the Young's modulus (ratio of ~40% between the [100] direction and a direction tilted by ~45° from the [001] toward the [100]).  相似文献   

10.
A type of polyimide/silica (PI/SiO2) copolymer model was established through the dehydration of tetraethyl orthosilicate molecules (TEOS) and bonding to a silane coupling agent. The content of SiO2 was controlled by adjusting the number of molecules which bound to the TEOS. Finally, the silica was formed into a hybrid model (hybrid PI/SiO2) with a small molecule embedded in the PI. The model was optimized by geometric and molecular dynamics and the changes in the model structure, Young's modulus, shear modulus, and glass-transition temperature (T g) were analyzed. The results showed that the density and cohesive energy density of the composites could be improved by doping SiO2 in PI. Young's modulus and shear modulus of PI/SiO2 hybrid materials were higher than undoped PI. The tensile strength reached 568.15 MPa when the doping content was 9%. Therefore, the structure design and content control of SiO2 was an effective way to improve the performance of a PI/SiO2 composite. The variation of T g and tensile strength of PI/SiO2 hybrid composites is consistent with that of PI/SiO2 composite synthesized in real experiment, which will be a convenient method for new material design and performance prediction. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47335.  相似文献   

11.
A maleimide and 2‐aminobenzonitrile (MIan) based benzoxazine has been synthesized and characterized. This benzoxazine has maleimide and nitrile functionalities that can polymerize, resulting in a highly crosslinked material. Incorporation of the imide group increases the shear viscosity compared to monofunctional benzoxazines but not as high as difunctional benzoxazines, allowing good processibility, while maintaining excellent mechanical and thermal properties. Catalysts, epoxy copolymerization, and rubber interlayer methods are utilized to optimize the composite properties. The 60% carbon cloth‐reinforced resin has achieved the flexural strength over 1 GPa. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 548–558, 2006  相似文献   

12.
13.
The n‐type polycrystalline Bi2O2Se1?xClx (0≤x≤0.04) samples were fabricated through solid‐state reaction followed by spark plasma sintering. The carrier concentration was markedly increased to 1.38×1020 cm?3 by 1.5% Cl doping. The maximum electrical conductivity is 213.0 S/cm for x=0.015 at 823 K, which is much larger than 6.2 S/cm for pristine Bi2O2Se. Furthermore, the considerable enhancement of the electrical conductivity outweighs the moderate reduction of the Seebeck coefficient by Cl doping, thus contributing to a high power factor of 244.40 μ·WK?2·m?1 at 823 K. Coupled with the intrinsically suppressed thermal conductivity originating from the low velocity of sound and Young's modulus, a ZT of 0.23 at 823 K for Bi2O2Se0.985Cl0.015 was achieved, which is almost threefold the value attained in pristine Bi2O2Se. It reveals that Se‐site doping can be an effective strategy for improving the thermoelectric performance of the layered Bi2O2Se bulks.  相似文献   

14.
W/WC bilayers were grown using the DC magnetron sputtering technique and varying substrate temperature. The mechanical and tribological behaviors were characterized using the nanoindentation and pin-on-disk techniques. The hardness and Young's modulus tended to increase, while the coefficient of friction tended to be stable with increasing substrate temperature. Moreover, better mechanical and tribological performances were observed for all of the coated systems compared with the uncoated steel. Furthermore, the inclusion of a W interlayer did not significantly influence the hardness; nevertheless, this interlayer dramatically improved the coating tribological behavior, thus producing less coating damage and decreasing the wear rate.  相似文献   

15.
《Ceramics International》2019,45(15):18803-18813
On the basis of successful preparation of amorphous-ceramic composite coating by atmospheric plasma spraying, a nanostructure bond-coat was prepared in-situ by inducing partial crystallization of an amorphous layer through heat treatment. The unit mechanics contribution rate (UMCR) was proposed to evaluate the mechanical properties of the coating, and the interference of the substrate to the evaluation of the coating mechanical properties was removed. In this work, the mechanical properties of the coating were systematically evaluated at the macroscopic, mesoscopic and microscopic scales through three-point bending (3 PB), microhardness and nanoindentation tests, respectively. Results show that the nanoparticle-ceramic coatings formed by heat treatment have a higher hardness and Young's modulus. The mechanical properties at the micro scale were obviously better than those at the macro scale. A partial crystallization was observed in the amorphous bond-coats in the process of heat treatment, and a large number of nanoparticles and solid solution were formed in the nanoparticle-ceramic coatings, effectively hindering the crack growth and improving the coating performance.  相似文献   

16.
The incorporation of viscoelastic materials represents an effective strategy to reduce the vibratory level of structural components. Thermoplastic vulcanizates (TPVs) are a special type of viscoelastic material that combines the elastomeric properties of rubbers with the easy processing of thermoplastics. In the present work, we propose innovative ways to improve the damping properties of high‐performance TPVs by using rubbers with carboxylic functionalities. For that, TPVs from physical blends of carboxylated hydrogenated acrylonitrile butadiene rubber (XHNBR) and polyamide 6 (PA6) were prepared. The chain dynamics of different mixed crosslink systems containing peroxide, metal oxides and hindered phenolic antioxidants were investigated in order to find the most suitable strategy to design a high‐performance TPV system with upgraded damping properties. The results indicate that the damping performance of the TPV system can be tailored by controlling the type and magnitude of the bonding interactions between the mixed crosslink system and the XHNBR rubber phase. Therefore, this study demonstrates the potential of TPV systems containing carboxylic rubbers as high‐performance damping materials. © 2020 Society of Chemical Industry  相似文献   

17.
The physical properties found during the swelling process of poly(2‐hydroxyethyl methacrylate) (PHEMA) and of copolymers of HEMA with mono‐n‐methyl itaconate, synthesized by solution and bulk polymerization, are reported. The swelling kinetics were followed at four different temperatures (295, 300, 305 and 310 K). Experimental data follow second‐order swelling kinetics, from where the kinetic rate constant k and the swelling capacity at equilibrium W were calculated as a function of temperature. The kinetic rate constant obeys Arrhenius behaviour. The following network parameters were determined for the hydrogels: Young's moduli E, effective crosslinking density ve, molar mass per crosslink MC, volume fraction ϕ2 and polymer‐liquid interaction parameter χ. © 2000 Society of Chemical Industry  相似文献   

18.
The processing of cross‐linked polyarylene ether nitrile (PEN), which has a triazine rings structure, has been investigated under different reaction times and temperatures. In this study, the PEN films prepared by the tape‐casting formed the thermally stable triazine rings by catalytic cross‐linking reaction gradually, which was characterized by Fourier transform infrared spectroscopy. The chemical cross‐linking reaction occurred as the CN group absorption of PEN at 2221 cm−1 decreased and a new absorption peak, at 1682 cm−1, was observed, and the absorption peak intensity would be progressively larger, with the extension of the processing time. After the formation of cross‐linking networks, the cross‐linking degree and thermal and mechanical properties of the processed films were improved substantially, compared with the untreated films. The film with added ZnCl2 as the catalyst was more rapidly cross‐linked, and its properties were better than that without catalyst at the same treatment conditions. The glass‐transition temperature (Tg) of PEN films processed at 350°C for 4 h (213.65°C) was higher than that of PEN films before the treatment (161°C), and the tensile strength was also improved significantly. The PEN was processed at 350°C for 2 h, whose initial decomposition temperature increases by about 10°C, compared with that of untreated film, at one time. The rheology behavior of the cross‐linked films was processed on dynamic rheometer to monitor and track the process of polymer cross‐linking reaction. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Atactic and syndiotactic‐rich poly(vinyl alcohol) fibers were prepared by gel spinning using ethylene glycol as a solvent. The mechanical properties of the fibers were independent of the degree of polymerization, although they were dependent on syndiotacticity. The amounts of tie molecules and the difference between the amounts of hydrogen bonds and microvoids determine the mechanical properties. The mechanical properties depended on the orientation of the segments in the amorphous parts. The entangled segments produced in the amorphous parts as a consequence of the difficulty of drawing were considered to form the voids and cracks, which grow to a banded structure. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1970–1977, 2002  相似文献   

20.
Because of its atomic resolution, scanning tunnel microscopy (STM) was applied to the study of the surface topography, in air, of rayon‐based carbon fibers (RCF) that were not previously studied. By a variety of larger scales, RCF exhibits some rugosities with “peaks” and “valleys.” The surfaces are characterized by stripe‐form crystallite stackings with the diameter of about 10 nm aligned at an angle between 45 and 60° to the fiber axis. A graphitelike structure was first observed on the surface of RCF examined at an atomic resolution scale. Distances between two adjacent carbon atoms of RCF and that between the closest centers of hexagonal carbon rings were estimated. It was also concluded that the hexagonal structure of RCF is deformed graphene (graphitelike) compared with that of highly oriented pyrolytic graphite. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 754–758, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号