首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Poly(ethylene terephthalate) (PET)/linear low‐density polyethylene (LLDPE) blends (75/25), with contents of poly(ethylene‐co‐methacrylic acid) partially neutralized with lithium (PEMA–Li) that were systematically changed from 0 to 45% relative to the LLDPE, were obtained by direct injection molding in an attempt to (1) ameliorate the performance of the binary blend and (2) find the best compatibilizer content. PEMA–Li did not modify the PET or LLDPE amorphous‐phase compositions or the crystalline content of PET. However, PEMA–Li did lead to a nucleation effect and to the presence of a second smaller and less perfect crystalline structure. PET induced a fractional crystallization in LLDPE that remained in the presence of PEMA–Li and reduced the crystallinity of LLDPE. The ternary blends showed two similar dispersed LLDPE and PEMA–Li phases with small subparticles, probably PET, inside. The compatibilizing effect of PEMA–Li was clearly shown by the impressive increase in the break strain, along with only small decreases in the modulus of elasticity and in the tensile strength. With respect to the recycling possibilities of LLDPE, a ternary blend with the addition of 22.5% PEMA–Li, which led to very slight modulus and yield stress decreases with respect to the binary blend and a break strain increase of 480%, appeared to be the most attractive. However, the highest property improvement appeared with the addition of 37.5% PEMA–Li, which led to elasticity modulus and tensile strength decreases of only 9%, along with a very high break strain increase (760%). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1322–1328, 2003  相似文献   

2.
Poly(ethylene‐co‐vinyl alcohol) (EVOH) was used as a compatibilizer to make blends of low‐density polyethylene (LDPE) and plasticized starch (TS). The tensile properties and impact strength were measured and compared with those of neat LDPE. The morphology of the blend specimens, both fractured and unfractured, was observed by scanning electron microscopy. Comparison of the properties showed that the impact strength of the blend improves significantly by the addition of a compatibilizer even with a high TS loading of 40 and 50% (by weight). A high elongation at break almost matching that of neat polyethylene was also obtained. The blend morphology of the etched specimens revealed fine dispersion of the starch in the polyethylene matrix, while the fracture surface morphology clearly indicate that the failure of compatibilized blends occurs mainly by the ductile mode. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3126–3134, 2002  相似文献   

3.
The ring‐opening polymerization of ε‐caprolactone was carried out with poly(ethylene‐co‐vinyl alcohol) as a macroinitiator to synthesize poly(ethylene‐co‐vinyl alcohol)‐graft‐polycaprolactone (EVOH‐g‐PCL). A simple low‐density polyethylene (LDPE)/polycaprolactone (PCL) (64/36) blend lost 5.3 wt % of its original weight after 90 days of a soil burial test. However, the elongation at break of the LDPE/PCL blend remained almost invariable even after the solid burial test because the tensile properties depended mostly on the LDPE phase on account of the poor interaction between the continuous LDPE matrix and the dispersed PCL phase. For EVOH‐g‐PCL, the elongation at break decreased drastically as a result of the soil burial test, and the reduction of the elongation at break was more pronounced for EVOH‐g‐PCL with a higher PCL concentration, even though the weight loss of EVOH‐g‐PCL after the soil burial test was as low as 1.2–1.3% and was nearly independent of the PCL concentration. Few holes were observed in EVOH‐g‐PCL when the PCL concentration was less than 26 wt % after an accelerated hydrolysis experiment at 60°C for 7 days in a 0.1M KOH solution. In contrast, the hydrolysis formed small holes in EVOH‐g‐PCL with a PCL concentration of 36 wt %. The LDPE/PCL blend was much better percolated, as a result of the hydrolysis, than EVOH‐g‐PCL with the same PCL concentration; the soil burial test showed the same results. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1064–1071, 2005  相似文献   

4.
Poly(ethylene‐co‐vinyl acetate) (EVA‐25) and poly(ethylene‐co‐vinyl acetate‐co‐carbon monoxide) (EVACO‐2410) and their blends with EVACO:EVA ratios of 80:20, 60:40, 40:60, and 20:80 were foamed using CO2. These foams are of interest for applications ranging from footwear to medical devices. Foaming experiments were carried out using 1 mm thick melt‐extruded films in CO2 at a range of pressures (100, 200, and 300 bar) and temperatures (30, 40, 50, and 60 °C). Foamability of the polymers was explored both under isothermal and gradient temperature conditions. Foams of EVACO‐2410 displayed high initial expansions followed by postfoaming relaxation and shrinkage while foams generated from EVA‐25 showed more dimensional stability. Blending EVACO‐2410 with EVA‐25 was explored as an approach to reduce postfoaming relaxation and shrinkage. The surfaces of the foamed samples displayed blistering that was linked to CO2 bubble entrapment and coalescence at the surface. Scanning electron micrographs of the foams generated from blends displayed distinct morphologies reflecting whether the sections were representing the machine‐ or cross‐machine direction of extruded films. In going from EVACO‐2410 to EVA‐25, the cell densities ranged from about 106 to 1010 cells/cm3. Foams with low bulk densities of about 0.11 g/cm3 could be generated. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45841.  相似文献   

5.
Background: Poly(ethylene terephthalate) (PET)/polyamide‐6 (PA‐6) blends are promising for engineering and food‐packaging applications. However, their poor toughness limits their use. In this study, an ethylene–acrylate–(maleic anhydride) terpolymer (E‐AE‐MA) was added to PET/PA‐6 blends in order to improve the toughness. Results: Izod impact tests indicated an excellent toughening effect of E‐AE‐MA. E‐AE‐MA particles were observed to be selectively dispersed at the interface between PET and PA‐6 phases and in the domain of the PA‐6 phase. Fourier transform infrared spectroscopy and differential scanning calorimetry results demonstrated that the formation of E‐AE‐MA layers around PA‐6 particles cut off the interaction between PET and PA‐6, resulting in an enlarged PA‐6 phase domain. Conclusion: Based on the experimental results, a core–shell microstructure, with PA‐6 as a hard core and E‐AE‐MA as a soft shell, could be suggested. The formation of this core–shell microstructure, along with the increased PA‐6 phase domain size, is the main toughening mechanism of E‐AE‐MA in PET/PA‐6 blends. Copyright © 2007 Society of Chemical Industry  相似文献   

6.
In this work, the compatibilization of blends of plasticized polyvinyl chloride (PVC) and polystyrene (PS) with poly(styrene‐con‐methylolacrylamide) (PSnMA) was investigated. The PSnMA was synthesized by emulsion polymerization with different amounts of n‐methylolacrylamide (nMA). Particle size and phase behavior was determined by scanning electron microscopy, and mechanical properties were determined in an Universal Testing Machine. Micrographs revealed that an appreciable size reduction of the dispersed phase was achieved when small amounts of PSnMA were added to the blend, and as the amount of nMA was increased, particle size decreased. When the (PVC/PS/PSnMA) blend was subjected to solvent extraction to remove PS and unreacted PVC, the residue showed a single Tg. Tensile modulus and the ultimate strength of the blends increased with PSnMA content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
A reactive compatibilizer, mercapto‐functionalized EVA (EVASH), in combination with styrene‐butadiene block copolymer (SBS), was used to compatibilize the blends of polystyrene (PS) and ethylene–vinyl acetate copolymer (EVA). The reactive compatibilization was confirmed by the presence of insoluble material and from dynamic‐mechanical analysis. In addition to a more uniform morphology with small phase size, the compatibilization also provided excellent stabilization of the morphology, with an almost complete suppression of coarsening during annealing. As a consequence, a substantial increase on the elongation at break without significant influence on ultimate tensile strength was achieved for compatibilized blends with different compositions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 14–22, 2006  相似文献   

8.
Compatibility of poly(styrene) (PS)/natural rubber (NR) blend is improved by the addition of diblock copolymer of poly(styrene) and cis‐poly(isoprene) (PS‐b‐PI). The compatibilizing effect has been investigated as a function of block copolymer molecular weight, composition and concentration. The effect of homopolymer molecular weight, processing conditions and mode of addition on the morphology of the dispersed phase have also been investigated by means of optical microscopy and scanning electron microscopy. A sharp decrease in phase dimensions is observed with the addition of a few percent of block copolymers. The effect levels off at higher concentrations. The leveling off could be an indication of interfacial saturation. For concentrations below the critical value, the particle size reduction is linear with copolymer volume fraction and agrees well with the prediction of Noolandi and Hong. The addition of the block copolymer improves the mechanical properties of the blend. An attempt is made to correlate the mechanical properties with the morphology of the blends. © 2001 Society of Chemical Industry  相似文献   

9.
Blends of polyamide6 (PA6) and acrylonitrile butadiene styrene (ABS) were prepared in presence or absence of up to 5 wt % of a reactive compatibilizer [styrene maleic anhydride copolymer (SMA) modified with 5 wt % multiwall carbon nanotubes (MWNT)] by melt‐mixing using conical twin screw microcompounder where the ABS content was varied from 20 to 50 wt %. The melt viscosity of the blends was significantly enhanced in presence of SMA modified by multiwall carbon nanotubes due to the reactive compatibilization, which leads to stabilized interphase in the blends. Furthermore, the presence of MWNT in the compatibilizer phase led to additional increase in viscosity and storage modulus. Morphological studies revealed the presence of either droplet‐dispersed or cocontinuous type depending on the blend compositions. Further, reactive compatibilization led to a significant change in the morphology, namely a structure refining, which was enhanced by MWNT presence as observed from SEM micrographs. DSC crystallization studies indicated a delayed crystallization response of PA6 in presence of ABS presumably due to high melt viscosity of ABS. The crystallization temperature and the degree of crystallinity were strongly dependent on the type of morphology and content of reactive compatibilizer, whereas the presence of MWNT had an additional influence. SAXS studies revealed the formation of thinner and less perfect crystallites of PA6 phase in the blends, which showed cocontinuous morphology. A unique observation of multiple scattering maxima at higher q region has been found in the blends of cocontinuous morphology, which was observed to be successively broadened in presence of the compatibilizer. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

10.
Low density polyethylene (LDPE) was reacted with benzoyl peroxide (BPO) and 2,2,6,6‐tetramethyl‐l‐piperidinyloxy (TEMPO) to prepare a latent macroinitiator, PE–TEMPO. Little polymer was synthesized when maleic anhydride (MAH) was bulk polymerized in the presence of the PE–TEMPO. However, addition of styrene accelerated the polymerization rate and PE‐grafted‐poly(styrene‐co‐maleic anhyride) [PE‐g‐P(ST‐co‐MAH)] was produced to a high yield. Chemical reaction between MAH units and hydroxyl groups of starch was nearly undetectable in the PE/PE‐g‐P(ST‐co‐MAH)/starch blend system, and the tensile properties of the blend were not enhanced significantly. However, addition of tetrabutyl titanate (TNBT) during the blending procedure improved the tensile properties significantly through an increased interfacial adhesion between the components in the blend system. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2434–2438, 2003  相似文献   

11.
Finely dispersed blends of polyamide 6 (PA‐6) and poly(ethylene terephthalate) (PET) were obtained by direct injection molding throughout the full composition range. The blends comprised a probably pure PA‐6 phase, and a PET phase that was apparently pure in PET‐rich blends and contained slight reacted PA‐6 amounts in PA‐6‐rich blends. This very complex morphology was characterized by the presence of dispersed particles at three levels and by a very large interface area/dispersed phase volume ratio. The linear ductility behavior was attributed to both the presence of reacted copolymers and the large interface area/dispersed volume ratio, and the synergism in both the Young's modulus and yield stress to the increased orientation of the blends related to that of the pure components. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 564–574, 2005  相似文献   

12.
In this article, maleated–grafted ethylene‐co‐vinyl acetate (EVA‐g‐MA) was used as the interfacial modifier for polypropylene/polyamide‐6 (PP/PA6) blends, and effects of its concentration on the mechanical properties and the morphology of blends were investigated. It was found that the addition of EVA‐g‐MA improved the compatibility between PP and PA6 and resulted in a finer dispersion of dispersed PA6 phase. In comparison with uncompatibilized PP/PA6 blend, a significant reduction in the size of dispersed PA6 domain was observed. Toluene‐etched micrographs confirmed the formation of interfacial copolymers. Mechanical measurement revealed that the addition of EVA‐g‐MA markedly improved the impact toughness of PP/PA6 blend. Fractograph micrographs revealed that matrix shear yielding began to occur when EVA‐g‐MA concentration was increased upto 18 wt %. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99:3300–3307, 2006  相似文献   

13.
Using reactive extrusion, polypropylene is functionalized with maleic anhydride and compared on an equimolar basis to polypropylene that is functionalized with an asymmetric, carboxylic acid containing peroxide. The grafting efficiency for the asymmetric peroxide is double that obtained for the maleic anhydride system. Moreover, the asymmetric peroxide yields a functionalized material with minimal molecular weight degradation and desirable mechanical properties, relative to maleic anhydride‐grafted polypropylene. In compatibilized blends of polypropylene and nylon 6,6, the polypropylene that was functionalized with the asymmetric peroxide is found to be an improved compatibilizer compared to that of maleic anhydride‐grafted polypropylene. The differences in mechanical properties of the two different functionalized polypropylene materials and their respective blends are rationalized on the basis of the grafting efficiency, molecular weight degradation during reactive extrusion, and effect of free functional species on the ability to form graft copolymers in compatibilized blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2398–2407, 2001  相似文献   

14.
The effect of cooling rate on the crystallization morphology and growth rate of poly(ethylene oxide) (PEO) and PEO/poly(methyl methacrylate) (PMMA) blends has been observed by Hot Stage Polarized Microscopy (HS‐POM). The isothermal crystallization kinetics study was carried out by differential scanning calorimetry (DSC). The spherulite morphology has been observed for the neat PEO with molecular weight of 6000 g/mol. By adding of PMMA with molecular weight of 39,300 g/mol, the growth fronts become irregular. With the increasing of PMMA content, the irregularity of growth front becomes more obvious, and the feather‐like morphology can be observed. When PMMA content is 60%, the spherulite is seriously destroyed. This phenomenon is more obvious for the slow cooling process. Based on the measurement of spherulite, the growth rate curves were obtained. According to the curves, it can be seen that the growth rate decreases with the increasing of PMMA content, and the growth rate during the slow cooling process is higher than that of the fast cooling process. The isothermal crystallization experiment indicates that the crystallization rate decreases dramatically with the increasing of PMMA content. And the Avrami parameter n was obtained, which is non‐integral and less than 3. Finally, it can be concluded that the higher value of n can be obtained for the condition with low crystallization rate. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41705.  相似文献   

15.
The polypropylene‐graft‐cardanol (PP‐g‐cardanol) was prepared by reactive extrusion with polypropylene (PP) and natural renewable cardanol which could increase the interfacial energy of PP and inhibit the degradation of PP during the process of reactive extrusion and usage. In this article, PP‐g‐cardanol and polypropylene‐graft‐maleic anhydride (PP‐g‐MAH) were used as compatibilizers of the polypropylene (PP)/poly(acrylonitrile‐butadiene‐styrene) (ABS) blends. PP/ABS (70/30, wt %) blends with PP‐g‐cardanol and PP‐g‐MAH were prepared by a corotating twin‐screw extruder. From the results of morphological studies, the droplet size of ABS was minimized to 1.93 and 2.01 μm when the content of PP‐g‐cardanol and PP‐g‐MAH up to 5 and 7 phr, respectively. The results of mechanical testing showed that the tensile strength, impact strength and flexural strength of PP/ABS (70/30) blends increase with the increasing of PP‐g‐cardanol content up to 5 phr. The complex viscosity of PP/ABS (70/30) blends with 5 phr PP‐g‐cardanol showed the highest value. Moreover, the change of impact strength and tensile strength of PP/ABS (70/30) blends were investigated by accelerated degradation testing. After 4 accelerated degradation cycles, the impact strength of the PP/ABS (70/30) blends with 5 phr PP‐g‐cardanol decrease less than 6%, but PP/ABS (70/30) blends with 5 phr PP‐g‐MAH and without compatibilizer decrease as much as 12% and 32%, respectively. The tensile strength of PP/ABS (70/30) blends has a similar tendency to that of impact strength. The above results indicated that PP‐g‐cardanol could be used as an impact modifier and a good compatibilizer, which also exhibited better stability performance during accelerated degradation testing. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41315.  相似文献   

16.
The crystallization behavior of polymer blends of poly(tetramethylene succinate) (PTMS) with poly(?‐caprolactone) (PCL) or poly(ethylene terephthalate) (PET) was investigated with differential scanning calorimetry under isothermal and nonisothermal conditions. The blends were prepared by solution casting and precipitation, respectively. The constituent polymers were semicrystalline materials and crystallized nearly independently in the blends. The addition of the second component to PTMS showed that PCL did not significantly influence the crystallinity of the constituents in the blends under isothermal conditions, whereas the crystallization of PTMS was slightly suppressed by crystalline PET. Nonisothermal crystallization under constant cooling rates was examined in terms of a quasi‐isothermal Avrami approach. In blends, the rates of crystallization were differently influenced by the second component. The rate of the constituent that crystallized at the higher temperature was barely influenced by the second component being in the molten state, whereas the rate of the second component, crystallizing when the first component was already crystalline, was altered differently under isothermal and nonisothermal conditions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 149–160, 2004  相似文献   

17.
The phase morphology developing in immiscible poly(styrene‐co‐acrylonitrile) (SAN)/ethylene–propylene–diene monomer (EPDM) blends was studied with an in situ reactively generated SAN‐g‐EPDM compatibilizer through the introduction of a suitably chosen polymer additive (maleic anhydride) and 2,5‐dimethyl‐2,5‐di‐(t‐butyl peroxy) hexane (Luperox) and dicumyl peroxide as initiators during melt blending. Special attention was paid to the experimental conditions required for changing the droplet morphology for the dispersed phase. Two different mixing sequences (simple and two‐step) were used. The product of two‐step blending was a major phase surrounded by rubber particles; these rubber particles contained the occluded matrix phase. Depending on the mixing sequence, this particular phase morphology could be forced or could occur spontaneously. The composition was stabilized by the formation of the SAN‐g‐EPDM copolymer between the elastomer and addition polymer, which was characterized with Fourier transform infrared. As for the two initiators, the blends with Luperox showed better mechanical properties. Scanning electron microscopy studies revealed good compatibility for the SAN/EPDM blends produced by two‐step blending with this initiator. Dynamic mechanical thermal analysis studies showed that the two‐step‐prepared blend with Luperox had the best compatibility. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
In this work, the compatibilization of polystyrene‐and‐nylon 6 mixtures with the ionomer, poly(styrene‐co‐sodium acrylate), is investigated. The ionomer was synthesized by emulsion polymerization. Scanning electron microscopy reveals that an appreciable size reduction of the dispersed phase is achieved in the whole composition range, when small amounts of the ionomer were added. IR spectroscopy and water absorption tests disclose that a chemical reaction occurs between the carboxylic group of the ionomer and the terminal amine group of the polyamide 6, which allows the compatibilization process. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91:1736–1745, 2004  相似文献   

19.
Conventional approaches to toughen thermosets are: (1) the polymerization‐induced phase separation of a rubber or a thermoplastic, or (2) the use of a dispersion of preformed particles in the initial formulation. In the present study it is shown that it is possible to combine both techniques by using graft copolymers with one of the blocks being initially immiscible and the other that phase separates during polymerization. This is illustrated by the use of poly(ethylene‐co‐vinyl acetate)‐graft‐poly(methyl methacrylate) (EVA‐graft‐PMMA) as modifier of an epoxy resin. EVA is initially immiscible and PMMA phase separates during polymerization. Blends of an epoxy monomer based on diglycidylether of bisphenol A (DGEBA, 100 parts by weight), piperidine (5 parts by weight), and PMMA (5 parts by weight), showed the typical polymerization‐induced phase separation of PMMA‐rich domains before gelation of the epoxy network. Replacing PMMA by EVA‐graft‐PMMA (5 parts by weight), yielded stable dispersions of EVA blocks, favoured by the initial solubility of PMMA blocks. Phase separation of PMMA blocks in the course of polymerization led to a dispersion of in situ generated biphasic particles (plausibly composed of EVA cores surrounded by PMMA shells), with average diameters varying from 0.3 to 0.6 µm with the cure temperature. This procedure may be used to generate stable dispersions of biphasic particles for toughening purposes. © 2002 Society of Chemical Industry  相似文献   

20.
The effect of the composition on the morphologies and properties of uncompatibilized and compatibilized blends of nylon 6 and low‐density polyethylene were studied over a wide range of weight fractions. The uncompatibilized blends had substantially reduced mechanical properties after mixing, and this was almost certainly due to poor interfacial adhesion between the two polymers. The addition of a zinc‐neutralized poly(ethylene‐co‐methacrylic acid) ionomer (Surlyn® 9020) as a compatibilizer improved the mechanical properties in comparison with those of the material blended without the compatibilizer. The clearest evidence of this improvement came from dynamic mechanical studies; for selected blends with high polyethylene contents, the drop in the modulus corresponding to the transition of a solid to a melt occurred at higher temperatures with the added compatibilizer. This improvement in the properties was accompanied by a reduction in the dispersed‐phase size due to the interaction between the ionic part of the ionomer and the amide groups of nylon 6, especially when nylon 6 was the dispersed phase of the blend. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 620–629, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号