首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fractional cascading is a technique designed to allow efficient sequential search in a graph with catalogs of total sizen. The search consists of locating a key in the catalogs along a path. In this paper we show how to preprocess a variety of fractional cascaded data structures whose underlying graph is a tree so that searching can be done efficiently in parallel. The preprocessing takesO(logn) time withn/logn processors on an EREW PRAM. For a balanced binary tree, cooperative search along root-to-leaf paths can be done inO((logn)/logp) time usingp processors on a CREW PRAM. Both of these time/processor constraints are optimal. The searching in the fractional cascaded data structure can be either explicit, in which the search path is specified before the search starts, or implicit, in which the branching is determined at each node. We apply this technique to a variety of geometric problems, including point location, range search, and segment intersection search.An earlier version of this work appears inProceedings of the 2nd Annual ACM Symposium on Parallel Algorithms and Architectures, July 1990, pp. 307–316. The first author's support was provided in part by National Science Foundation Grant CCR-9007851, by the U.S. Army Research Office under Grants DAAL03-91-G-0035 and DAAH04-93-0134, and by the Office of Naval Research and the Advanced Research Projects Agency under Contract N00014-91-J-4052, ARPA Order 8225. This research was performed while the second author was at Brown University. Support was provided in part by an NSF Presidential Young Investigator Award CCR-9047466, with matching funds from IBM, by National Science Foundation Grant CCR-9007851, by the U.S. Army Research Office under Grant DAAL03-91-G-0035, and by the Office of Naval Research and the Advanced Research Projects Agency under Contract N00014-91-J-4052, ARPA Order 8225.  相似文献   

2.
A new criterion for series-parallel irreducibility is given which makes no reference to underlying semigroups but involves only series-parallel connection operations.Research was sponsored by National Institutes of Health, Grant No. GM-12236-03; Office of Naval Research, Contract No. N00014-67-A-0181-011; and U.S. Army Research Office (Durham), Grant No. DA-31-124-ARO-D-483.  相似文献   

3.
We present a distributed algorithm for maximum cardinality matching in general graphs. On a general graph withn vertices, our algorithm requiresO(n 5/2) messages in the worst case. On trees, our algorithm computes a maximum matching usingO(n) messages after the election of a leader.Work on this paper has been supported by the Office of Naval Research under Contract N00014-85-K-0570.  相似文献   

4.
We present the first optimal parallel algorithms for the verification and sensitivity analysis of minimum spanning trees. Our algorithms are deterministic and run inO(logn) time and require linear-work in the CREW PRAM model. These algorithms are used as a subroutine in the linear-work randomized algorithm for finding minimum spanning trees of Cole, Klein, and Tarjan. Research partially supported by a National Science Foundation Graduate Fellowship and by DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), a National Science Foundation Science and Technology Center, Grant No. NSF-STC88-09648. Research at Princeton University was partially supported by the National Science Foundation, Grant No. CCR-8920505, the Office of Naval Research, Contract No. N00014-91-J-1463, and by DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), a National Science Foundation Science and Technology Center, Grant No. NSF-STC88-09648.  相似文献   

5.
Model trees were conceived as a structure-sharing approach to represent information in disjunctive deductive databases. In this paper we introduce the concept ofordered minimal model trees as a normal form for disjunctive deductive databases. These are model trees in which an order is imposed on the elements of the Herbrand base. The properties of ordered minimal model trees are investigated as well as their possible utilization for efficient manipulation of disjunctive deductive databases. Algorithms are presented for constructing and performing operations on ordered model trees. The complexity of ordered model tree processing is addressed. Model forests are presented as an approach to reduce the complexity of ordered model tree construction and processing.This research was supported by the National Science Foundation, under the grant Nr. IRI-89-16059, the Air Force Office of Scientific Research, under the grant Nr. AFOSR-91-0350, and the Fulbright Scholar Program.This work was done while visiting at the University of Maryland Institute for Advanced Computer Studies.  相似文献   

6.
In this paper we consider the problem of using disk blocks efficiently in searching graphs that are too large to fit in internal memory. Our model allows a vertex to be represented any number of times on the disk in order to take advantage of redundancy. We give matching upper and lower bounds for completed-ary trees andd-dimensional grid graphs, as well as for classes of general graphs that intuitively speaking have a close to uniform number of neighbors around each vertex. We also show that, for the special case of grid graphs blocked with isothetic hypercubes, there is a provably better speed-up if even a small amount of redundancy is permitted.Support was provided in part by an IBM Graduate Fellowship, by NSF Research Grants CCR-9007851 and IRI-9116451, and by Army Research Office Grant DAAL03-91-G-0035.Support was provided in part by NSF Grants CCR-9003299, CCR-9300079, and IRI-9116843, and by NSF/DARPA Grant CCR-8908092.Support was provided in part by a National Science Foundation Presidential Young Investigator Award CCR-9047466 with matching funds from IBM, by NSF Research Grant CCR-9007851, and by Army Research Office Grant DAAL03-91-G-0035.  相似文献   

7.
Computing shortest paths in a directed graph has received considerable attention in the sequential RAM model of computation. However, developing a polylog-time parallel algorithm that is close to the sequential optimal in terms of the total work done remains an elusive goal. We present a first step in this direction by giving efficient parallel algorithms for shortest paths in planar layered digraphs.We show that these graphs admit special kinds of separators calledone- way separators which allow the paths in the graph to cross it only once. We use these separators to give divide- and -conquer solutions to the problem of finding the shortest paths between any two vertices. We first give a simple algorithm that works in the CREW model and computes the shortest path between any two vertices in ann-node planar layered digraph in timeO(log2 n) usingn/logn processors. We then use results of Aggarwal and Park [1] and Atallah [4] to improve the time bound toO(log2 n) in the CREW model andO(logn log logn) in the CREW model. The processor bounds still remain asn/logn for the CREW model andn/log logn for the CRCW model.Support for the first and third authors was provided in part by a National Science Foundation Presidential Young Investigator Award CCR-9047466 with matching funds from IBM, by NSF Research Grant CCR-9007851, by Army Research Office Grant DAAL03-91-G-0035, and by the Office of Naval Research and the Advanced Research Projects Agency under Contract N00014-91-J-4052, ARPA, Order 8225. Support for the second author was provided in part by NSF Research Grant CCR-9007851, by Army Research Office Grant DAAL03-91-G-0035, and by the Office of Naval Research and the Advanced Research Projects Agency under Contract N00014-91-J-4052 and ARPA Order 8225.  相似文献   

8.
Support functions and samples of convex bodies in R n are studied with regard to conditions for their validity or consistency. Necessary and sufficient conditions for a function to be a support function are reviewed in a general setting. An apparently little known classical such result for the planar case due to Rademacher and based on a determinantal inequality is presented and a generalization to arbitrary dimensions is developed. These conditions are global in the sense that they involve values of the support function at widely separated points. The corresponding discrete problem of determining the validity of a set of samples of a support function is treated. Conditions similar to the continuous inequality results are given for the consistency of a set of discrete support observations. These conditions are in terms of a series of local inequality tests involving only neighboring support samples. Our results serve to generalize existing planar conditions to arbitrary dimensions by providing a generalization of the notion of nearest neighbor for plane vectors which utilizes a simple positive cone condition on the respective support sample normals.This work partially supported by the Center for Intelligent Control Systems under the U.S. Army Research Office Grant DAAL03-92-G-0115, the Office of Naval Research under Grant N00014-91-J-1004, and the National Science Foundation under Grant MIP-9015281.Partially supported by the National Science Foundation under grant IRI-9209577 and by the U.S. Army Research Office under grant DAAL03-92-G-0320  相似文献   

9.
Summary A variant of the drinking philosophers algorithm of Chandy and Misra is described and proved correct in a modular way. The algorithm of Chandy and Misra is based on a particular dining philosophers algorithm and relies on certain properties of its implementation. The drinking philosophers algorithm presented in this paper is able to use an arbitrary dining philosophers algorithm as a subroutine; nothing about the implementation needs to be known, only that it solves the dining philosophers problem. An important advantage of this modularity is that by substituting a more time-efficient dining philosophers algorithm than the one used by Chandy and Misra, a drinking philosophers algorithm withO(1) worst-case waiting time is obtained, whereas the drinking philosophers algorithm of Chandy and Misra hasO(n) worst-case waiting time (forn philosophers). Careful definitions are given to distinguish the drinking and dining philosophers problems and to specify varying degrees of concurrency. Jennifer L. Welch received her B.A. in 1979 from the University of Texas at Austin, and her S.M. and Ph.D. from the Massachusetts Institute of Technology in 1984 and 1988 respectively. She has been a member of technical staff at GTE Laboratories Incorporated in Waltham, Massachusetts and an assistant professor at the University of North Carolina at Chapel Hill. She is currently an assistant professor at Texas A&M University. Her research interests include algorithms and lower bounds for distributed computing.Much of this work was performed while this author was at the Laboratory for Computer Science, Massachusetts Institute of Technology, supported by the Advanced Research Projects Agency of the Department of Defense under contract N00014-83-K-0125, the National Science Foundation under grants DCR-83-02391 and CCR-86-11442, the Office of Army Research under contract DAAG29-84-K-0058, and the Office of Naval Research under contract N00014-85-K-0168. This author was also supported in part by NSF grant CCR-9010730, an IBM Faculty Development Award, and NSF Presidential Young Investigator Award CCR-9158478This author was supported by the Office of Naval Research under contract N00014-91-J-1046, the Advanced Research Projects Agency of the Department of Defense under contract N00014-89-J-1988, and the National Science Foundation under grant CCR-89-15206. The photograph and autobiography of Professor N.A. Lynch were published in Volume 6, No. 2, 1992 on page 121  相似文献   

10.
We studylazy structure sharing as a tool for optimizing equivalence testing on complex data types. We investigate a number of strategies for implementing lazy structure sharing and provide upper and lower bounds on their performance (how quickly they effect ideal configurations of our data structure). In most cases when the strategies are applied to a restricted case of the problem, the bounds provide nontrivial improvements over the naïve linear-time equivalence-testing strategy that employs no optimization. Only one strategy, however, which employs path compression, seems promising for the most general case of the problem.Work completed while at Princeton University and supported by a Fannie and John Hertz Foundation Fellowship, National Science Foundation Grant No. CCR-8920505, and the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS) under NSF-STC-91-19999.Work completed while at Princeton University and DIMACS and supported by DIMACS under NSF-STC-91-19999.Research at Princeton University partially supported by the National Science Foundation, Grant No. CCR-8920505, the Office of Naval Research, Contract No. N00014-91-J-1463, and by DIMACS under NSF-STC-91-19999.  相似文献   

11.
Maintaining bridge-connected and biconnected components on-line   总被引:1,自引:1,他引:0  
We consider the twin problems of maintaining the bridge-connected components and the biconnected components of a dynamic undirected graph. The allowed changes to the graph are vertex and edge insertions. We give an algorithm for each problem. With simple data structures, each algorithm runs inO(n logn +m) time, wheren is the number of vertices andm is the number of operations. We develop a modified version of the dynamic trees of Sleator and Tarjan that is suitable for efficient recursive algorithms, and use it to reduce the running time of the algorithms for both problems toO(m(m,n)), where is a functional inverse of Ackermann's function. This time bound is optimal. All of the algorithms useO(n) space.Research at Princeton University supported in part by National Science Foundation Grant DCR-86-05962 and Office of Naval Research Contract N00014-91-J-1463.This work was partially done while the author was at the Department of Computer Science, Princeton University, Princeton, NJ 08544, USA.  相似文献   

12.
Generalizing the notion of function composition, we introduce the concept ofconditional function composition and present a theory of such compositions. We use the theory to describe the semantics of a programming language with exceptions, and to relate exceptions to theIF statement.Supported in part by Air Force Office of Scientific Research grant number 91-0070. Now at DEC Systems Research Center, Palo Alto, CA.  相似文献   

13.
We present anO(n 2 log3 n) algorithm for the two-center problem, in which we are given a setS ofn points in the plane and wish to find two closed disks whose union containsS so that the larger of the two radii is as small as possible. We also give anO(n 2 log5 n) algorithm for solving the two-line-center problem, where we want to find two strips that coverS whose maximum width is as small as possible. The best previous solutions of both problems requireO(n 3) time.Pankaj Agarwal has been supported by DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), an NSF Science and Technology Center, under Grant STC-88-09648. Micha Sharir has been supported by the Office of Naval Research under Grants N00014-89-J-3042 and N00014-90-J-1284, by the National Science Foundation under Grant CCR-89-01484, by DIMACS, and by grants from the US-Israeli Binational Science Foundation, the Fund for Basic Research administered by the Israeli Academy of Sciences, and the G.I.F., the German-Israeli Foundation for Scientific Research and Development. A preliminary version of this paper has appeared inProceedings of the Second Annual ACM-SIAM Symposium on Discrete Algorithms, 1991, pp. 449–458.  相似文献   

14.
We present a general technique for dynamizing a class of problems whose underlying structure is a computation graph embedded in a tree. We introduce three fully dynamic data structures, called path attribute systems, tree attribute systems, and linear attribute grammars, which extend and generalize the dynamic trees of Sleator and Tarjan. More specifically, we associate values, called attributes, with the nodes and paths of a rooted tree. Path attributes form a path attribute system if they can be maintained in constant time under path concatenation. Node attributes form a tree attribute system if the tree attributes of the tail of a path Π can be determined in constant time from the path attributes of Π. A linear attribute grammar is a tree-based linear expression such that the values of a node μ are calculated from the values at the parent, siblings, and/for children of μ. We provide a framework for maintaining path attribute systems, tree attribute systems, and linear attribute grammars in a fully dynamic environment using linear space and logarithmic time per operation. Also, we demonstrate the applicability of our techniques by showing examples of graph and geometric problems that can be efficiently dynamized, including biconnectivity and triconnectivity queries, planarity testing, drawing trees and series-parallel digraphs, slicing floorplan compaction, point location, and many optimization problems on bounded tree-width graphs. Received May 13, 1994; revised October 12, 1995.  相似文献   

15.
Given a setC of strings of rewriting rules of a phrase structure grammarG, we consider the setL c (G) of those words generated by leftmost derivations inG whose corresponding string of rewriting rules is an element ofC. The paper concerns the nature of the setL c (G) whenC andG are assumed to have special form. For example, forG an arbitrary phrase structure grammar,L c (G) is an abstract family of languages ifC is an abstract family of languages, andL c (G) is bounded ifC is bounded.Research sponsored in part by the Air Force Cambridge Research Laboratories, Office of Aerospace Research, USAF, under Contract F1962867C0008, and by the Air Force Office of Scientific Research, Office of Aerospace Research, USAF, under AFOSR Grant No. AF-AFOSR-1203-67.  相似文献   

16.
Summary The single server M/G/1 queue subject to Poisson interruptions has many useful applications in computer systems modeling. The interruptions are usually characterized by their type of service-preemption discipline. This paper deals with this model in its most general setting, allowing the simultaneous presence of all types of interruptions that may be encountered in real systems. Inspite of the inherent complexity of the analysis, it is possible to derive analytic closed form expressions for interesting performance measures. The results obtained are of theoretical interest as well as of practical significance. In particular, we derive the Laplace Stieltjes transform of the completion time associated with a customer's ervice and obtain the steady-state average number of customers in the system. An application to the modeling of checkpointing and recovery in a transactional system is considered.This work was supported in part by Air Force Office of Scientific Research under grant AFOSR-84-0132, by the Army Research Office under contract DAAG29-84-K0045 and by the National Science Foundation under grant MCS-830200  相似文献   

17.
Algorithms for parallel memory,II: Hierarchical multilevel memories   总被引:1,自引:0,他引:1  
In this paper we introduce parallel versions of two hierarchical memory models and give optimal algorithms in these models for sorting, FFT, and matrix multiplication. In our parallel models, there areP memory hierarchies operating simultaneously; communication among the hierarchies takes place at a base memory level. Our optimal sorting algorithm is randomized and is based upon the probabilistic partitioning technique developed in the companion paper for optimal disk sorting in a two-level memory with parallel block transfer. The probability of using/times the optimal running time is exponentially small in (log ) logP.A summarized version of this research was presented at the 22nd Annual ACM Symposium on Theory of Computing, Baltimore, MD, May 1990. This work was done while the first author was at Brown University. Support was provided in part by a National Science Foundation Presidential Young Investigator Award with matching funds from IBM, by NSF Research Grants DCR-8403613 and CCR-9007851, by Army Research Office Grant DAAL03-91-G-0035, and by the Office of Naval Research and the Defense Advanced Research Projects Agency under Contract N00014-91-J-4052 ARPA Order 8225. This work was done in part while the second author was at Brown University supported by a Bellcore graduate fellowship and at Bellcore.  相似文献   

18.
This paper is concerned with improvement in optical image quality by image restoration. Image restoration is an ill-posed inverse problem which involves the removal or minimization of degradations caused by noise and blur in an image, resulting from, in this case, imaging through a medium. Our work here concerns the use of the underlying Toeplitz structure of such problems, and associated techniques for accelerating the convergence of iterative image restoration computations. Denoising methods, including total variation minimization, followed by segmentation-based preconditioning methods for minimum residual conjugate gradient iterations, are investigated. Regularization is accomplished by segmenting the image into (smooth) segments and varying the preconditioners across the segments. By taking advantage of the Toeplitz structure, our algorithms can be implemented with computational complexity of onlyO (ln 2 logn), wheren 2 is the number of pixels in the image andl is the number of segments used. Also, parallelization is straightforward. Numerical tests are reported for atmospheric imaging problems, including the case of spatially varying blur. Research supported in part by a National Science Foundation Postdoctoral Research Fellowship. Research sponsored by the U.S. Air Force Office of Scientific Research under grant F49620-97-1-1039. Research sponsored by the U.S. Air Force Office of Scientific Research under grant F49620-97-1-0139, and by the National Science Foundation under grant CCR-96-23356. Research sponsored by the National Science Foundation under grant CCR-96-23356.  相似文献   

19.
Algorithms for parallel memory,I: Two-level memories   总被引:1,自引:0,他引:1  
We provide the first optimal algorithms in terms of the number of input/outputs (I/Os) required between internal memory and multiple secondary storage devices for the problems of sorting, FFT, matrix transposition, standard matrix multiplication, and related problems. Our two-level memory model is new and gives a realistic treatmentof parallel block transfer, in which during a single I/O each of theP secondary storage devices can simultaneously transfer a contiguous block ofB records. The model pertains to a large-scale uniprocessor system or parallel multiprocessor system withP disks. In addition, the sorting, FFT, permutation network, and standard matrix multiplication algorithms are typically optimal in terms of the amount of internal processing time. The difficulty in developing optimal algorithms is to cope with the partitioning of memory intoP separate physical devices. Our algorithms' performances can be significantly better than those obtained by the wellknown but nonoptimal technique of disk striping. Our optimal sorting algorithm is randomized, but practical; the probability of using more than times the optimal number of I/Os is exponentially small inl(logl) log(M/B), whereM is the internal memory size.A summarized version of this research was presented at the 22nd Annual ACM Symposium on Theory of Computing, Baltimore, MD, May 1990. This work was done while the first author was at Brown University. Support was provided in part by a National Science Foundation Presidential Young Investigator Award with matching funds from IBM, by NSF Research Grants DCR-8403613 and CCR-9007851, by Army Research Office Grant DAAL03-91-G-0035, and by the Office of Naval Research and the Defense Advanced Research Projects Agency under Contract N00014-91-J-4052 ARPA Order 8225. This work was done in part while the second author was at Brown University supported by a Bellcore graduate fellowship and at Bellcore.  相似文献   

20.
This article is the twelfth of a series of articles discussing various open research problems in automated reasoning. Here we focus on finding criteria for guaranteeing the absence of a complete set of reductions. We include a suggestion for evaluating a proposed solution to this research problem.This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号