首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-stage oxidation-sulfation roasting of nickel sulfide concentrate in fluidized bed was investigated to generate water-soluble metal sulfates as an alternative process to smelting of the sulfide concentrate for the recovery of valuable metals. The first stage, i.e., oxidation roasting, was employed to preferentially oxidize the iron before performing sulfation roasting. A batch fluidized bed roaster was constructed for roasting tests. Roasting products from various roasting temperatures and different roasting times were analyzed by SEM/EDS, EPMA, XRD, and ICP-OES to investigate the oxidation roasting behavior of the nickel concentrate as a function of temperature and time.  相似文献   

2.
The oxidation of three nickel concentrates from two Canadian smelters was studied by thermogravimetric analysis. Concentrate samples were heated to 1223 K (950 °C) in inert or oxidizing atmospheres to determine the reaction behavior. By recording the mass change as well as the SO2 content in the outlet gas, the oxidation behaviors were quantified. Isothermal roasting tests were carried out on the concentrates over the temperature range of 673 K (400 °C) to 1123 K (850 °C). When heated in air, the samples gain mass as a result of sulfate formation at temperatures up to approximately 873 K (600 °C) to 973 K (700 °C), whereas at higher temperatures, the samples exhibit a large mass loss attributed to sulfate decomposition as well as direct SO2 formation by oxidation. In a 4 pct O2 gas atmosphere, significantly less sulfates were formed. Mixed reactions take place, in which some lead to mass loss and SO2 generation, and others lead to mass gain and SO2 consumption. The relative importance of the various reactions depends on the experimental conditions.  相似文献   

3.
The present study concerns a detailed investigation of microstructural evolution of nickel based hardfaced coating on AISI 304 stainless steel by high velocity oxy-fuel (HVOF) deposition technique. The work has also been extended to study the effect of coating on microhardness, wear resistance and corrosion resistance of the surface. Deposition has been conducted on sand blasted AISI 304 stainless steel by HVOF spraying technique using nickel (Ni)-based alloy [Ni: 68.4 wt pct, chromium (Cr): 17 wt pct, boron (B): 3.9 wt pct, silicon (Si): 4.9 wt pct and iron (Fe): 5.8 wt pct] of particle size 45 to 60 ??m as precursor powder. Under the optimum process parameters, deposition leads to development of nano-borides (of chromium, Cr2B and nickel, Ni3B) dispersion in metastable and partly amorphous gamma nickel (??-Ni) matrix. The microhardness of the coating was significantly enhanced to 935 VHN as compared to 215 VHN of as-received substrate due to dispersion of nano-borides in grain refined and partly amorphous nickel matrix. Wear resistance property under fretting wear condition against WC indenter was improved in as-deposited layer (wear rate of 4.65 × 10?7 mm3/mm) as compared to as-received substrate (wear rate of 20.81 × 10?7 mm3/mm). The corrosion resistance property in a 3.56 wt pct NaCl solution was also improved.  相似文献   

4.
The formation conditions for the recovery of nickel from sulfate solutions as Ni3S2 have been investigated; this sulfide is more reactive than NiS in subsequent leaching operations. Hydrogen sulfide gas at atmospheric pressure is introduced into a NiSO4-Na2SO4-MgSO4-Al2(SO4)3 solution in the presence of reduced iron powder. Although the formation of Ni3S2 is compctitive with that of NiS, the nickel precipitation efficiency and the ratio of nickel as Ni3S2 to the total nickel precipitated reached 99.5 to 99.9 and 90 to 95 pct, respectively, under the following conditions: 363 K, Ph2s 31 kPa, Ni2+ 4.0 g · dm-3, 3[Feo]/[Ni2+] 1.25 to 1.5, H2S flow rate 70 to 100 cm3 · min-1, and 45 to 60 minutes retention time. Selective formation of Ni3S2 is achieved within 10 minutes, and a reaction on the surface of the iron is rate-determining during the early stages of precipitation. Since the iron is almost totally consumed after 1 to 2 hours of reaction, the precipitated Ni3S2 is gradually converted to NiS. Calculations considering the buffer action of sulfate ion and sulfate complex formation with polyvalent metal cations as well as with nickel ions confirmed that significant nickel precipitation as Ni3S2 should occur under the test conditions.  相似文献   

5.
《Hydrometallurgy》1987,19(1):1-9
Ni3S2 prepared by a wet process was easily leached as nickel sulfate at 383 K, po2 1 MPa, and sulfuric acid concentration of 0.1–0.15 mol L−1. The leaching reaction proceeds through the intermediate formation of NiS prior to complete dissolution. A constant leaching rate was observed for most of the duration of the reaction, and this has been attributed to an increase in the specific surface area of the sulfide particles. A thin sulfur layer was formed on the sulfide; the diffusion of oxygen through the sulfur layer was found to be rate-determining.  相似文献   

6.
For the recycling/disposal of aluminum dross/salt cake from aluminum remelting, aqueous leaching offers an interesting economic process route. One major obstacle is the reaction between the AlN present in the dross and the aqueous phase, which can lead to the emission of NH3 gas, posing a serious environmental problem. In the current work, a leaching process using CO2-saturated water is attempted with a view to absorb the ammonia formed in situ. The current results show that at a solid-to-liquid ratio of 1:20 and 3 hours at 291 K (18 °C), the extraction of Na and K from the dross could be kept as high as 95.6 pct and 95.9 pct respectively. At the same time, with continuous CO2 bubbling, the mass of escaping NH3 gas decreased from 0.25 mg in pure water down to <0.006 mg, indicating effective absorption of ammonia by carbonized water. Furthermore, the results in the case of the leaching experiments with synthetic AlN show that the introduction of CO2 causes hindrance to the hydrolysis of AlN. The plausible mechanisms for the observed phenomena are discussed. The concept of the leaching of the salt cake by carbonated water and the consequent retention of AlN in the leach residue opens up a promising route toward an environment-friendly recycling process for the salt cake viz. recovery of the salts, utilization of CO2, and further processing of the dross residue, toward the synthesis of AlON from the leach residues.  相似文献   

7.
The leaching behavior of metals from a limonitic laterite was investigated using a sulfation–roasting–leaching process for the recovery of nickel and cobalt. The ore was mixed with water and concentrated sulfuric acid followed by roasting and finally leaching with water. Various parameters were studied including the amount of acid added, roasting temperature and time, sample particle size, addition of Na2SO4 and solid/liquid ratio in leaching process. More than 88% Ni, 93% Co and < 4% Fe are extracted under the determined conditions. Simultaneously, about 90% Mn and Cu, 70% Mg, 45% Al, 25% Zn, 4% Cr and Ca are extracted respectively. The pH of the leach solution is about 2. The leaching efficiency is independent of sample particle size due to decomposition of ferric sulfate formed during roasting. The roasted mass was characterized by various physico-chemical techniques such as DSC/TGA, XRD and SEM. This process provides a simple and effective way for the extraction of nickel and cobalt from laterite ore.  相似文献   

8.
A novel process for recovering rare earth from weathered black earth   总被引:4,自引:0,他引:4  
A novel process for recovering rare-earth (RE) elements from weathered-black-earth slime is developed. This process involves the initial removal of Mn by reduction leaching using SO2 followed by ammonium chloride roasting of the residual solids from the leaching process. The controlled roasting selectively converts RE oxides to water-soluble RE chlorides. The roasted materials are then dispersed in warm water (75 °C) to extract RE, while water-insoluble iron oxides remain in gangue sludge, minimizing iron impurities in final RE products and hence simplifying the purification process. Leadchloride precipitates are obtained by cooling the leachate to −10 °C, and RE is recovered using oxalic acid precipitation. With this new process, a product of 92 pct purity at a RE recovery greater than 65 pct is obtained. In addition, Mn and Pb are recovered as by-products, with a recovery of 64 and 54 pct, respectively. The effect of operating variables on RE recovery is examined and the process chemistry described.  相似文献   

9.
In the present study, the diffusion bonding of 17-4 precipitation hardening stainless steel to Ti alloy with and without nickel alloy as intermediate material was carried out in the temperature range of 1073 K to 1223 K (800 °C to 950 °C) in steps of 298 K (25 °C) for 60 minutes in vacuum. The effects of bonding temperature on interfaces microstructures of bonded joint were analyzed by light optical and scanning electron microscopy. In the case of directly bonded stainless steel and titanium alloy, the layerwise α-Fe + χ, χ, FeTi + λ, FeTi + β-Ti phase, and phase mixture were observed at the bond interface. However, when nickel alloy was used as an interlayer, the interfaces indicate that Ni3Ti, NiTi, and NiTi2 are formed at the nickel alloy-titanium alloy interface and the PHSS-nickel alloy interface is free from intermetallics up to 1148 K (875 °C) and above this temperature, intermetallics were formed. The irregular-shaped particles of Fe5Cr35Ni40Ti15 have been observed within the Ni3Ti intermetallic layer. The joint tensile and shear strength were measured; a maximum tensile strength of ~477 MPa and shear strength of ~356.9 MPa along with ~4.2 pct elongation were obtained for the direct bonded joint when processed at 1173 K (900 °C). However, when nickel base alloy was used as an interlayer in the same materials at the bonding temperature of 1148 K (875 °C), the bond tensile and shear strengths increase to ~523.6 and ~389.6 MPa, respectively, along with 6.2 pct elongation.  相似文献   

10.
The sulfur trioxide roasting of a ferruginous, nickeliferous laterite was investigated at temperatures from 500° to 800°C. The kinetics of the fixed bed sulfation appeared to be logarithmic and this was interpreted to indicate a transport controlled process. Reaction rate constants were evaluated and it was found that the time for equivalent sulfation of nickel was more than 5 orders of magnitude greater at 800°C than at 600°C. The composition of the products appeared to dominate the reaction kinetics through changes in their physical nature. Nickel and cobalt sulfated quite rapidly at temperatures from 600° to 700°C but favorable selectivity over iron could be obtained only at temperatures >750°C where the nickel sulfation rate falls off rapidly. A two-step sulfation process was investigated that takes advantage of the rate characteristics of the low temperature process and attains selectivity by reversing the iron reaction at a higher temperature. Approximately 87 pct of the nickel, 97 pct of the cobalt, and 2 pct of the iron were extracted in a two-step process without additives.  相似文献   

11.
In this paper, jarosite residue (JR) blended with concentrated H2SO4 was subjected to a process comprising microwave roasting and water leaching. The effects of H2SO4/JR weight ratio, microwave roasting temperature and time, water leaching conditions on the recovery of Fe, Zn, In, Cu, Cd, Ag and Pb were investigated utilising a series of experiments.

Based on energy conservation and environmental protection, optimum conditions for metals recovery from JR were determined as: H2SO4/JR weight ratio?=?0.36, microwave roasting temperature, 250°C; roasting time, 30?min; leaching temperature, 50°C; leaching time, 1?h; and liquid–solid ratio, 4:1 (mL/g), thus, the extraction of Fe, Zn, In, Cu, Ag and Cd were 89.4, 80.7, 85.1, 90.7, 61.3 and 48.8% respectively, while the Pb was concentrated in the final residue. Scanning electron microscope-energy dispersive spectrometer (SEM-EDS) patterns were used to characterise and analyse the transformation of valuable metals in the residue after roasting and leaching.  相似文献   

12.
13.
Using a levitation technique, molten nickel sulfide droplets were oxidized at temperatures above 1500°C under oxygen potentials varying from 5 to 40 pct in He gas. To analyze the results, the oxidation process was divided into two stages. The first stage corresponded to the desulfurization of Ni3S2 by oxidation of the dissolved sulfur. In the second stage, a small amount of desulfurization, oxidation of nickel vapor and absorption of oxygen gas into the droplet occurred. Both stages were found to be controlled by mass transfer of oxygen within the gas boundary layer. Under conditions of high oxygen potential, a halo appeared around the levitated droplet during the initial period. This halo disappeared during desulfurization, but reappeared towards the end of the oxidation period. Formerly Post-Doctoral Fellow, Department of Metallurgy and Materials Science, University of Toronto.  相似文献   

14.
15.
A cleaner method has been developed for the extraction of vanadium from vanadium slag. Compared to the traditional alkaline salts roasting followed by the water leaching process, in the nonsalt roasting process because no additives are added, the chromium spinel in the raw vanadium slag will not be converted to carcinogenic chromate salts and exhaust gas will not be produced. The ammonium metavanadate is precipitated from the water leach solution. The wastewater from the vanadate precipitation process can be recycled into the leaching process. The leaching residue can be comprehensively utilized in conjunction with an iron-making process using blast furnace. The nonsalt roasting mechanism was systematically investigated in a laboratory study. The XRD and morphology analysis of roasted vanadium slag showed that the oxidation of vanadium spinel occurred in the following steps: (1) the destruction of vanadium spinel and the formation of solid solution of Fe2O3·V2O3; (2) the oxidation of solid solution of Fe2O3·V2O3 to Fe2O3·V2O4 and a portion of the V(IV) in the Fe2O3·V2O4 was reacted with basic oxide such as MgO to generate the low-valence vanadate Mg2VO4; (3) the formation by further oxidation of highest-valence vanadates Mn2V2O7 and Mg2V2O7. The effects of particle size, oxygen concentration, gas flow rate, and temperature on vanadium recovery were investigated. Simultaneously, the effects of leaching variables, including ammonium carbonate concentration and temperature, were examined. The thermodynamics of the system are also reported.  相似文献   

16.
Neodymium-iron-boron (Nd-Fe-B) magnets were most widely applied to permanent magnetic products in the world due to their high magnetic force. The increasing growth of scrap Nd-Fe-B magnets resulted in disposal problems and the reduction of neodymium (Nd) valuable resources. In this study, we developed a simple hydrometallurgical precipitation process with pH adjustment to separate and recover Nd 100 pct recovery from scrap Nd-Fe-B magnets. Several physical and chemical methods such as demagnetization, grinding, screening, and leaching processes were also adopted to investigate the recovery of Nd and other metals from scrap Nd-Fe-B magnets. The leaching process was carried out with four leaching reagents such as NaOH, HCl, HNO3, and H2SO4. Batch studies were also conducted to optimize the leaching operating conditions with respect to leaching time, concentration of leaching reagent, temperature, and solid/liquid ratio for both HCl and H2SO4 leaching reagents. Nd was successfully separated and recovered with 75.41 wt pct from optimized H2SO4 leaching solution through precipitation. Further, the purity and weight percentage of the obtained Nd product was analyzed using scanning electron microscopy–energy-dispersive spectroscopy (SEM-EDS) analysis. An X-ray diffraction (XRD) study confirmed the obtained product of Nd was in the form of NdOOH and Nd(OH)3.  相似文献   

17.
The oxidation of nickel sulfide whose atomic fraction of sulfur,x s, is 0.40 to 0.44 was studied in a mixed O2-N2 gas stream at 923, 973, and 1023 K. The oxygen partial pressure was maintained at 2.0 x 104 Pa. In the oxidation of nickel sulfide ofx s = 0.40 and 0.41, a dense NiO layer was formed on the sulfide surface without the evolution of SO2 gas, because of the low sulfur activity. Diffusion of nickel within the inner sulfide core toward the surface controlled the oxidation rate during the first one minute of oxidation. Subsequently, the oxidation rate was controlled by the diffusion of nickel through the formed NiO layer. In the oxidation of nickel sulfide ofx s = 0.44 at 973 and 1023 K, the reaction proceeded irregularly to the interior of the sulfide core with the evolution of SO2 gas, and a porous oxide layer was formed, due to the high sulfur activity of nickel sulfide. For the same reason, this oxidation was also accompanied by the dissociation of nickel sulfide. Under the experimental conditions ofx s = 0.42, 1023 K and xs = 0.44,923 K, the oxidation started with weight increase and without the evolution of SO2 gas, and in the subsequent stage the weight decreased and SO2 gas was evolved. K. HAJIKA, former Graduate Student  相似文献   

18.
Roasting of molybdenum concentrates with sodium chloride has high potential and can be an alternative to oxidizing roasting and autoclave leaching; however, the chemistry and mechanism are poorly known. The chemical mechanism of the roasting process between molybdenite concentrate and sodium chloride in the presence of atmospheric oxygen is proposed. It is demonstrated that the process occurs through molybdenite oxidation, up to molybdenum trioxide, with subsequent formation of sodium polymolybdates and molybdenum dioxydichloride from molybdenum trioxide. It is found that the formation of water-soluble sodium polymolybdates from molybdenum trioxide stops over time due to passivation of sodium chloride surface by polymolybdates. It is proved experimentally that preliminary grinding of the mixture in a furnace charge leads to an increase in the polymolybdate fraction of the roasting products, which constitutes approximately 65 pct of molybdenum initially in the roasted mixture against 20 to 22 pct in a nonground mixture (or 75 to 77 pct against 30 to 33 pct of molybdenum in calcine). For the first time, the presence of the Na2S2O7 phase in the calcine was confirmed experimentally. The suggested mechanism gives possible explanations for the sharp increase of MoO2Cl2 formation within the temperature range of 673 K to 723 K (400 °C to 450 °C) that is based on the catalytic reaction of molybdenum dioxydichloride from the Na2S2O7 liquid phase as it runs in a melt.  相似文献   

19.
The simultaneous oxidation-sulfidation rate of nickel has been measured as a function of SO2 pressure (0.04 to 1 atm) in Ar-SO2 gas mixtures at 603°C. The observed corrosion rates are about 107 times faster than the oxidation rate of nickel in oxygen at 1 atm. The product scale consists of an inner Ni3S2 layer and an outer two-phase layer of NiO and Ni3S2. A linear rate law is observed during an initial time period, and the most probable rate-controlling step is dissociation of SO2. An increase in the scale-gas interfacial area increases the corrosion rate during intermediate time periods. With increasing time, parabolic corrosion rates are measured for SO2 pressures of 0.25 and 1 atm. Values of the nickel diffusivity in Ni3S2 calculated from our measured parabolic-rate constants are in good agreement with recently reported values. This agreement indicates that an interconnected Ni3S2 phase in the outer two-phase layer provides rapid transport paths for nickel diffusion through the scale. Formerly a Graduate Student in the Department of Metallurgy and Materials Science at the University of Pennsylvania, Philadelphia, PA  相似文献   

20.
The formation of the Ni3Al layer in NiAl (55 at. pct Ni)-pure Ni diffusion couples at temperatures above 1000°C has been found to be controlled almost completely by volume diffusion. At 1000°C and below, the relatively small grain size of the Ni3Al compound in the layers caused such a large contribution from grain boundary diffusion, that the layer growth rates at 1000°C exceeded those at 1100°C and even those at 1200°C. In Ni3Al (75at. pct Ni)-pure Ni diffusion couples the Ni3Al compound rapidly converted into the solid solution of aluminum in nickel. Volume-diffusion coefficients calculated by the Boltzmann-Matano method yielded heats of activation of 55, 64, and 65 kcal·mol?1 for NiAl, Ni3Al and the solid solution of aluminum in nickel, respectively. In addition, eleven different types of diffusion couples were prepared from various Ni?Al alloys and annealed at 1000°C. Marker interface displacements and observations of porosity in these couples yielded a more detailed picture of the Kirkendall-effect than earlier work had done. The ratio of the intrinsic diffusion coefficients at the marker interface,D NI/D Al, is greater than one in the nickel-rich NiAl phase. For the Ni3Al phase no statement can be made on the basis of this work. When the marker interface is located in the nickel solid solution,D Ni/D Al is smaller than one. The phase boundary concentrations in these couples did not show the expected deviation from the equilibrium concentrations in two-phase alloys; this finding is discussed with regard to the free-energycomposition diagram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号