首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physical metallurgical characteristics of high purity Fe-26 Cr and Fe-26 Cr-1 Mo ferritic stainless steels, containing low carbon and nitrogen contents, were studied. The studies demonstrate that a commercially produced Fe-26 Cr-1 Mo high purity alloy containing a maximum of 50 to 150 ppm of carbon and nitrogen is capable of good mechanical properties and fabricability. The alloy was previously demonstrated to exhibit good corrosion resistance. Because of these properties, the high purity Fe-26 Cr-1 Mo alloy is a viable alternate to 300-series stainless steels as well as more highly alloyed materials for many applications. This paper is based on a presentation made at a symposium on “New Developments in Ferritic and Duplex Stainless Steels,” held at the Fall Meeting in Cleveland, Ohio, on October 19, 1972, under the sponsorship of the Corrosion Resistant Metals Committee of TMS-IMD and the Corrosion and Oxidation Activity of the ASM.  相似文献   

2.
The corrosion behaviour of the austenitic steel Fe-23Mn-4Al-5Cr-0.3C in different aqueous solutions of pH-0.8 to 15.3 and the corrosion protection mechanism induced by adding Al or Al and Cr have been investigated by electrochemical measurements and AES/XPS analysis. The corrosion behaviour of Fe-Mn base steel have been compared with those of mild steel, cryogenic 9 % Ni steel, stainless steels 1Cr13 and 1Cr18Ni9Ti. The addition of manganese to mild steel is very detrimental to the corrosion resistance. Fe-25Mn steel passivates with difficulty even in such neutral aqueous electrolytes as 1 M Na2SO4 solution. The addition of 5 % aluminum to Fe-25Mn steel confers passivity to the steel in neutral or oxidizing, chloride-free solution. The addition of 5 % Cr to Fe-Mn-Al steel further improves resistance to corrosion. The passivity of Fe-23.5Mn-4Al-5Cr-0.3C steel in aqueous electrolytes tested is superior to that of 9 % Ni steel and approximate to that of 1Cr13 stainless steel. The corrosion resistance is probably imparted by a thin barrier film of oxides. The outer part of the passive film formed on the surface of Fe-23.5Mn-4Al-5Cr-0.3C steel in 1 M Na2SO4 solution is enriched in Al3+, Cr3+ and Fe3+, and this means that the film is probably made up of a mixture of Al2O3, Cr2C3 and Fe2O3.  相似文献   

3.
The influence of chemical composition, temperature, and pressure on the nitrogen solubility of various high alloy stainless steel grades, namely Fe-14Cr-(0.17-7.77)Mn-6Ni-0.5Si-0.03C [wt pct], Fe-15Cr-3Mn-4Ni-0.5Si-0.1C [wt pct], and Fe-19Cr-3Mn-4Ni-0.5Si-0.15C [wt pct], was studied in the melt. The temperature-dependent N-solubility was determined using an empirical approach proposed by Wada and Pehlke. The thus calculated N-concentrations overestimate the actual N-solubility of all the studied Fe-Cr-Mn-Ni-Si-C steel melts at a given temperature and pressure. Consequently, the calculation model has to be modified by Si and C because both elements are not recognized in the original equation. The addition of the 1st and 2nd order interaction parameters for Si and C to the model by Wada and Pehlke allows a precise estimation of the temperature-dependent nitrogen solubility in the liquid steel bath, and fits very well with the measured nitrogen concentrations during processing of the steels. Moreover, the N-solubility enhancing effect of Cr- and Mn-additions has been demonstrated.  相似文献   

4.
超级高氮奥氏体不锈钢的耐腐蚀性能及氮的影响   总被引:20,自引:2,他引:18  
用电化学测试、化学浸泡等方法研究了超级奥氏体不锈钢00Cr24Ni22Mo7Mn3CuN(654SMO)的耐点腐蚀和耐缝隙腐蚀的性能。通过改变氮含量,研究了氮对奥氏体不锈钢的耐点腐蚀和耐缝隙腐蚀性能的影响,结果表明,氮和适量的铬、钼结合,能显提高奥氏体不锈钢的耐点腐蚀和缝隙腐蚀的能力,并且随着氮含量的增国,砥体不锈钢的耐点腐蚀和耐缝隙腐蚀的能力也增强,对比实验表明,超级奥氏体不锈钢在耐点腐蚀,缝隙腐蚀等局部腐蚀性能方面可以和镍基合金C-276媲美,甚至优于镍基合金。  相似文献   

5.
The effect of Nb microalloying on microstructure, mechanical properties, and pitting corrosion properties of quenched and tempered 13?pct Cr-5?pct Ni-0.02?pct C martensitic stainless steels with different Mo and N contents was investigated. The microstructure, density, and dispersion of high-angle boundaries, nanoscale precipitates, and amount of retained austenite were characterized by using electron backscattered diffraction, transmission electron microscopy, and X-ray diffraction to correlate with properties. The results show that the combined effects of lowering nitrogen content in 13?pct Cr-5?pct Ni-1~2?pct Mo-0.02?pct C steels to 0.01?wt pct, and adding 0.1?pct Nb are to decrease the amount of Cr-rich precipitates, as Nb preferentially combines with residual carbon and nitrogen to form carbonitrides, suppressing the formation of Cr2N and Cr23C6. Austenite grain refinement can be achieved by Nb microalloying through proper heat treatment. If the nitrogen content is kept high, then Cr-rich precipitates would occur irrespective of microalloying addition. The NbN would also occur at high temperature, which will act as substrate for nucleation of coarse precipitates during subsequent tempering, impairing the toughness of the steel. It was shown that the addition of Nb to low interstitial super martensitic stainless steel retards the formation of reversed austenite and results in the formation of nanoscale precipitates (5 to 15?nm), which contribute to a significant increase in strength. More importantly, the pitting corrosion resistance was found to increase with Nb addition. This is attributed to suppression of Cr-rich precipitates, which can cause local depletion of Cr in the matrix and the initiation of pitting corrosion.  相似文献   

6.
This paper reports a study of grain boundary segregation, intergranular corrosion, and intergranular stress corrosion cracking in austenitic stainless steels. The results show that phosphorus, nitrogen, and sulfur all segregate to grain boundaries in these materials and that they can affect one another's segregation through site compctition. In particular, the results demonstrate that phosphorus segregation can be lowered by the presence of nitrogen and sulfur in the steel. Also, if manganese is present in the steel, sulfur segregation will be greatly decreased as a result of formation of manganese sulfides. Phosphorus, sulfur, and nitrogen will not initiate intergranular corrosion in the modified Strauss test, although if corrosion is initiated by chromium depletion, these elements might enhance the corrosion process. Phosphorus segregation does enhance corrosion in the Huey test, even in steels that have not undergone grain boundary chromium depletion, although there does not appear to be a precise correlation between the depth of corrosion penetration and phosphorus segregation. Intergranular stress corrosion cracking in 288 °C water at a pH of 2.5 and electrochemical potential of OVSHE can occur in these steels even in the absence of chromium depletion if sulfur is present on the grain boundaries. Phosphorus segregation appears to have very little effect.  相似文献   

7.
In recent years,nitrogen-alloyed stainless steels have been a research hotspot in the field of stainless steel product and technology. Nitrogen-alloyed austenitic stainless steels developed by Baosteel and their applications are introduced. These steels are nitrogen-controlled products 304 N and 316 LN,nitrogen containing economical products BN series and high-nitrogen stainless steel( HNS) series. The results show that the presence of nitrogen can significantly improve the strength and corrosion resistance of steel produced. By nitrogen alloying,economical austenitic stainless steels w ith considerably less nickel than 304 can be obtained; the corrosion resistances of these steels are almost the same as 304. Furthermore,by a scientific approach of nitrogen alloying,high-nitrogen steel of0. 8% nitrogen content is fabricated under the non-pressurized conditions,and the pitting potential of this steel is 1. 0 V. At present,nitrogen-alloyed steels developed by Baosteel are w idely utilized in the manufacture of cryogenic storage containers,transportation containers,and many household w ares.  相似文献   

8.
高氮无镍奥氏体不锈钢在多个领域有着广泛的应用前景,然而氮质量分数对其物理性能和化学性能的影响规律尚不十分清晰。设计并冶炼了氮质量分数为0.02%~1.20%的无镍奥氏体不锈钢,对不同氮质量分数钢的晶格常数、线膨胀系数、电阻率、耐汗液腐蚀性能、自腐蚀电位进行了检测和分析。结果表明,氮质量分数的增加使材料的晶格常数随着线性增大,获得了氮质量分数与晶格常数的定量关系。氮质量分数越高,材料的膨胀系数和电阻率越大。不同氮质量分数试验钢经720 h人工汗液腐蚀后,氮质量分数最低(0.02%)和最高(1.20%)时,试验钢严重腐蚀,而其他钢未被腐蚀。试验钢的自腐蚀电位首先随着氮质量分数的增加而升高,峰值出现在氮质量分数为1.05%时,氮质量分数为1.20%的钢其自腐蚀电位下降至低于氮质量分数为0.60%钢的水平。  相似文献   

9.
Structure and properties of corrosion and wear resistant Cr-Mn-N steels   总被引:2,自引:0,他引:2  
Steels containing about 12 pct Cr, 10 pct Mn, and 0.2 pct N have been shown to have an unstable austenitic microstructure and have good ductility, extreme work hardening, high fracture strength, excellent toughness, good wear resistance, and moderate corrosion resistance. A series of alloys containing 9.5 to 12.8 pct Cr, 5.0 to 10.4 pct Mn, 0.16 to 0.32 pct N, 0.05 pct C, and residual elements typical of stainless steels was investigated by microstructural examination and mechanical, abrasion, and corrosion testing. Microstructures ranged from martensite to unstable austenite. The unstable austenitic steels transformed to α martensite on deformation and displayed very high work hardening, exceeding that of Hadfield’s manganese steels. Fracture strengths similar to high carbon martensitic stainless steels were obtained while ductility and toughness values were high, similar to austenitic stainless steels. Resistance to abrasive wear exceeded that of commercial abrasion resistant steels and other stainless steels. Corrosion resistance was similar to that of other 12 pct Cr steels. Properties were not much affected by minor compositional variations or rolled-in nitrogen porosity. In 12 pct Cr-10 pct Mn alloys, ingot porosity was avoided when nitrogen levels were below 0.19 pet, and austenitic microstructures were obtained when nitrogen levels exceeded 0.14 pct.  相似文献   

10.
庞阳  邹德宁  吕香  李苗苗  闫星宇 《钢铁》2021,56(3):34-40
为了进一步提高超级马氏体不锈钢的强塑性能和优良耐腐蚀能力,在实验室条件下研发制备了氮质量分数为0.35%、锰质量分数分别为0.4%和2.0%的2种新型超级马氏体不锈钢试料,并采用淬火-配分的工艺对其进行处理;借助万能试验机、光学显微镜、扫描电镜、透射电镜和电子背散射衍射等方法对试验钢的微观组织和力学性能进行表征测试.研...  相似文献   

11.
80 years has passed since duplex stainless steels were first produced and now they have developed into an integral series with the efforts on R & D and development of technology.In the recent decade, duplex stainless steels have been accepted by more and more customers and increasingly used. The first duplex grade produced in Sweden was 453E(26Cr-5Ni) in the 1930s,and then developed into 329.These two grades were characterized by high carbon content and called the first generation of duplex stainless steels.At that time,it was very difficult to add nitrogen into the steels and maintain the phase equilibrium,thus influencing the application properties,for example,intergranular corrosion post welding. One method to solve this problem is to alter the chemical composition,like adding nitrogen,etc.And that came to reality with the development of AOD and metallurgical theory of stainless steels.New series of duplex grades,called the second and third generations duplex,have successively emerged since the 1980s. These grades are characterized by high amounts of alloying elements,like chromium,molybdenum and nitrogen.Furthermore,super duplex stainless grades,like S32750,S32760 and S32707,were developed for various harsh service environments with their outstanding corrosion resistance and workability.These grades possess corrosion resistance corresponding to super austenitic grades,or close to nickel-base alloys, and are used in ocean-engineering,sea water desalination and oil industries,etc. And the application of duplex stainless steel is expending into other industries.For instance,453E is used in the pulp & paper industry.2205(S32205),a medium-alloyed grade,has become the most typical one in the duplex stainless steel family and widely used in many industries like pulp & paper,chemical and oil.New applications are emerging with better understanding of the duplex grades. Modern duplex stainless steels features most the corrosion resistance and strength,making them most cost-efficient in more and more projects. In this paper,the history of duplex stainless steels is recalled and reviewed from R&D,production to application,and latest grades like S82441 are also introduced.  相似文献   

12.
Gas carburizing of high-alloyed stainless steels increases surface hardness, as well as the overall mechanical characteristics of the surface. The growth of chromium-rich carbides during carbon transfer into the steel causes precipitation hardening in the surface, but decreases the chromium content in solid solution. In order to maintain a good corrosion resistance in the carburized layer, the stainless steel composition and the carburizing process need to be optimized. To limit the experimental work, a methodology using software for modeling the thermodynamic and kinetic properties in order to simulate carbon diffusion and phase transformations during gas carburizing is presented. Thermodynamic calculations are initially used to find the optimum parameters (T, carbon wt pct, etc.) in order to maintain the highest Cr and Mo contents in the austenitic solid solution. In a second step, kinetic calculations using the diffusion-controlled transformations (DICTRA) software are used to predict how the amount of the different phases varies and how the carbon profile in the steel changes as a function of time during the process. Experimental carbon profiles were determined using a wavelength-dispersive spectrometer for electron-probe microanalysis (WDS-EPMA), while carbide compositions were measured by energy-dispersive spectroscopy_X (EDS_X) analyses. A good agreement between calculated and experimental values was observed for the Fe-13Cr-5Co-3Ni-2Mo-0.07C and the Fe-12Cr-2Ni-2Mo-0.12C (wt pct) martensitic stainless steels at 955 °C and 980 °C.  相似文献   

13.
The corrosion behaviour of 304LN stainless steels containing three different nitrogen content (0.132, 0.193, 0.406 wt% N) was investigated by potentiodynamic anodic polarization technique, in 1, 4, 6 M nitric acid and simulated high level waste (HLW) medium. The results showed that all three alloys exhibited good corrosion resistance in nitric acid and simulated HLW and the corrosion properties were found to be similar. Owing to the spontaneous formation of the protective chromium oxide passive film in nitric acid and simulated HLW, increasing the nitrogen content of the alloy did not indicate any discernable effect on the corrosion resistance in both media. It was also found that the oxidizing ions present in simulated HLW did not deteriorate the passive film stability of the nitrogen containing alloys. In chloride medium, the highest nitrogen content 304LN stainless steel showed a profound increase in pitting corrosion resistance when compared to the lower nitrogen content alloy. Optical and scanning electron microscopy was carried out to obtain information about the microstructure. The results of the investigation are discussed in the paper.  相似文献   

14.
Previous work on 3Cr-1.5MoV (nominally Fe-3Cr-2.5Mo-0.25V-0.1C), 2.25Cr-2W (Fe-2.25Cr-2W-0.1C), and 2.25Cr-2WV (Fe-2.25Cr-2W-0.25V-0.1C) steels indicated that the impact toughness of these steels depended on the microstructure of the bainite formed during continuous cooling from the austenitization temperature. Microstructures formed during continuous cooling can differ from classical upper and lower bainite formed during isothermal transformation. Two types of nonclassical microstructures were observed depending on the cooling rate: carbide-free acicular bainite at rapid cooling rates and granular bainite at slower cooling rates. The Charpy impact toughness of the acicular ferrite was considerably better than for the granular bainite. It was postulated that alloying to improve the hardenability of the steel would promote the formation of acicular bainite, just as increasing the cooling rate does. To test this, chromium and tungsten were added to the 2.25Cr-2W and 2.25Cr-2WV steel compositions to increase their hardenability. Charpy testing indicated that the new 3Cr-W and 3Cr-WV steels had improved impact toughness, as demonstrated by lower ductile-brittle transition temperatures and higher upper-shelf energies. This improvement occurred with less tempering than was necessary to achieve similar toughness for the 2.25Cr steels and for high-chromium (9 to 12 pct Cr) Cr-W and Cr-Mo steels.  相似文献   

15.
高氮不锈钢作为一种重要新型工程材料,具有优异的力学性能和耐腐蚀性能,受到国内外广泛重视。介绍了粉末冶金制备高氮不锈钢的原理和特点;论述了高氮不锈钢粉末的制备与成形技术;指出了利用粉末冶金制备高氮不锈钢所具有的技术优势,其中注射成形——氮化烧结工艺更具发展潜力。  相似文献   

16.
445J2铁素体不锈钢由于高的导热率、低的热膨胀系数以及良好的耐蚀性能使得其作为溴冷机中一些部件的良好候选材料,本文采用电化学测试方法对比研究了445J2超纯铁素体不锈钢(/%:0.01C,22.5Cr, 1.9Mo, 0.27Nb, 0.20Ti, 0.09Al, 0.36Cu, 0.015P,0.001S,0.015N)和316L奥氏体不锈钢(/%:0.002C,16.8Cr, 10.19Ni, 2.02Mo, 0.025P,0.0008S)在20~60℃0.1~1M的溴化锂溶液中的点蚀行为,并采用扫描电镜(SEM)和能谱分析仪(EDS)对电化学结果进行表征。结果表明,随着LiBr温度和浓度的升高,两种钢腐蚀电流密度增大,点蚀电位降低,耐点蚀性变差;氧化物和硫化物夹杂会引起两种钢的点蚀;高含量的Cr以及Mo、Ti、Nb、Al等合金元素使445J2钢具有优异的耐点蚀性能。  相似文献   

17.
高氮不锈钢作为一种重要新型工程材料,具有优异的力学性能和耐腐蚀性能,受到国内外广泛重视。介绍了粉末冶金制备高氮不锈钢的原理和特点;论述了高氮不锈钢粉末的制备与成形技术;指出了利用粉末冶金制备高氮不锈钢所具有的技术优势,其中注射成形——氮化烧结工艺更具发展潜力。  相似文献   

18.
高氮钢的基础研究及应用进展   总被引:2,自引:0,他引:2  
介绍了高氮钢结构特点的最新研究,高氮钢平衡相图的进展及其在高氮钢成分设计方面的应用;概括了氮在钢液中的溶解度公式和高氮钢熔炼过程中的关键问题;分析了氮在奥氏体钢、铁素体钢和双相不锈钢中的作用,即氮在不牺牲强度的同时不仅提高了钢的韧性,且改善了钢的抗腐蚀性能;并列举了一些典型的高氮钢的用途。  相似文献   

19.
采用浸泡失重法和电化学方法研究Ce和W对铁素体不锈钢在含Cl-溶液中耐点蚀性能的影响,并通过恒电位极化法测定不同Ce和W含量的铁素体不锈钢临界点蚀温度(CPT)。结果表明,W和Ce都可显著抑制铁素体不锈钢在FeCl3溶液中的腐蚀溶解,且含W的不锈钢蚀坑坑底有W元素富集。Ce和W的添加提高了不锈钢在5%NaCl溶液中的临界点蚀温度,并且当W的质量分数达到1%时,可以显著增强蚀坑的再钝化能力。添加Ce和W可提高不锈钢的点蚀电位,降低腐蚀电流密度,提高不锈钢的耐点蚀性能。不同成分的铁素体不锈钢在中性氯溶液中都表现出稳定的钝态,而Ce和W的添加可以提高钝化膜的稳定性,扩大钝化区范围。  相似文献   

20.
电化学手段可以实现对不锈钢材料的快速评价和腐蚀机理研究,因而受到广泛应用。在不锈钢耐蚀性评价方面,最常采用的电化学手段主要有腐蚀电位测试、交流阻抗测试、恒电位极化测试以及循环动电位极化测试。本文分别针对上述四种电化学方法在不锈钢耐蚀性评价上的应用情况进行了介绍,明确了各种检测方法的特点。腐蚀电位及交流阻抗测试是无损检测手段,可以满足长周期腐蚀监测需求;恒电位极化和循环动电位极化测试可以获得材料的极化特征参数,有利于对材料的腐蚀机理及耐蚀性进行评价。结合当前的不锈钢腐蚀研究现状,展望了电化学方法在腐蚀研究领域的发展趋势:未来电化学方法将更多作为腐蚀调控手段,需要结合其他检测技术实现对不锈钢腐蚀过程的精细分析。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号