首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ruminant animals are a natural reservoir of the foodborne pathogen Escherichia coli O157:H7. Some foodborne pathogens (e.g., E. coli) are equipped with a nitrate reductase that cometabolically reduces chlorate. The intracellular reduction of chlorate to chlorite kills nitrate reductase-positive bacteria; however, species that do not reduce nitrate are not affected by chlorate. Therefore, it has been suggested that ruminants be supplemented with chlorate prior to shipment for slaughter in order to reduce foodborne illnesses in human consumers. Sheep (n = 14) were fed a high-grain ration and were experimentally infected with E. coli O157:H7. These sheep were given an experimental product (XCP) containing the equivalent of either 2.5 mM NaNO3 and 100 mM NaCl (control sheep; n = 7) or 2.5 mM NaNO3 and 100 mM NaClO3 (chlorate [XCP]-treated sheep; n = 7). Control and XCP-treated sheep were treated for 24 h; XCP treatment reduced the population of inoculated E. coli O157:H7 (P < 0.05) from 10(2), 10(5), and 10(5) CFU/g in the rumen, cecum, and rectum, respectively, to < 10(1) CFU/g in all three sections of the gastrointestinal tract. The number of sheep testing positive for E. coli O157:H7 was significantly reduced by XCP treatment. In a similar fashion, total E. coli and coliforms were also reduced (P < 0.05) in all three compartments of the intestinal tract. Intestinal pH, total volatile fatty acid production, and the acetate/propionate ratio were unaffected by XCP treatment. On the basis of these results, it appears that chlorate treatment can be an effective method for the reduction of E. coli O157:H7 populations in ruminant animals immediately prior to slaughter.  相似文献   

2.
The effect of a high-pressure treatment on the survival of a pressure-resistant strain of Escherichia coli O157:H7 (NCTC 12079) in orange juice during storage at 3 degrees C was investigated over the pH range of 3.4 to 5.0. The pH of shelf-stable orange juice was adjusted to 3.4, 3.6, 3.9, 4.5, and 5.0 and inoculated with 10(8) CFU ml(-1) of E. coli O157:H7. The orange juice was then pressure treated at 400 MPa for 1 min at 10 degrees C or was held at ambient pressure (as a control). Surviving E. coli O157:H7 cells were enumerated at 1-day intervals during a storage period of 25 days at 3 degrees C. Survival of E. coli O157:H7 during storage was dependent on the pH of the orange juice. The application of high pressure prior to storage significantly increased the susceptibility of E. coli O157:H7 to high acidity. For example, after pressure treatment, the time required for a 5-log decrease in cell numbers was reduced from 13 to 3 days at pH 3.4, from 16 to 6 days at pH 3.6, and from >25 to 8 days at pH 3.9. It is evident that the use of high-pressure processing of orange juice in order to increase the juice's shelf-life and to inactivate pathogens has the added advantage that it sensitizes E. coli O157:H7 to the high acid conditions found in orange juice, which results in the survival of significantly fewer E. coli O157:H7 during subsequent refrigerated storage.  相似文献   

3.
Brine solution injection of beef contaminated with Escherichia coli O157:H7 on its surface may lead to internalization of pathogen cells and/or cross-contamination of the brine, which when recirculated, may serve as a source of new product contamination. This study evaluated survival of E. coli O157:H7 in brines formulated without or with antimicrobials. The brines were formulated in sterile distilled water (simulating the composition of freshly prepared brines) or in a nonsterile 3% meat homogenate (simulating the composition of recirculating brines) at concentrations used to moisture-enhance meat to 110% of initial weight, as follows: sodium chloride (NaCl, 5.5%) + sodium tripolyphosphate (STP, 2.75%), NaCl + sodium pyrophosphate (2.75%), or NaCl + STP combined with potassium lactate (PL, 22%), sodium diacetate (SD, 1.65%), PL + SD, lactic acid (3.3%), acetic acid (3.3%), citric acid (3.3%), nisin (0.0165%) + ethylenediamine tetraacetic acid (EDTA, 200 mM), pediocin (11000 AU/mL) + EDTA, sodium metasilicate (2.2%), cetylpyridinium chloride (CPC, 5.5%), or hops beta acids (0.0055%). The brines were inoculated (3 to 4 log CFU/mL) with rifampicin-resistant E. coli O157:H7 (8-strain composite) and stored at 4 or 15 °C (24 to 48 h). Immediate (0 h) pathogen reductions (P < 0.05) of 1.8 to ≥ 2.4 log CFU/mL were observed in brines containing CPC or sodium metasilicate. Furthermore, brines formulated with lactic acid, acetic acid, citric acid, nisin + EDTA, pediocin + EDTA, CPC, sodium metasilicate, or hops beta acids had reductions (P < 0.05) in pathogen levels during storage; however, the extent of pathogen reduction (0.4 to > 2.4 log CFU/mL) depended on the antimicrobial, brine type, and storage temperature and time. These data should be useful in development or improvement of brine formulations for control of E. coli O157:H7 in moisture-enhanced meat products. PRACTICAL APPLICATION: Results of this study should be useful to the meat industry for developing or modifying brine formulations to reduce the risk of E. coli O157:H7 in moisture-enhanced meat products.  相似文献   

4.
应用DPO-PCR技术检测肠出血性大肠杆菌O157∶H7   总被引:2,自引:0,他引:2  
利用双启动寡核苷酸引物(dual-priming oligonucleotide,DPO)聚合酶链式反应(polymerase chain reaction,PCR)技术检测肠出血性大肠杆菌O157∶H7。根据DPO引物设计原则,以肠出血性大肠杆菌O157∶H7 rfbE 基因为靶基因设计一对DPO引物,经过反应体系的优化,建立了肠出血性大肠杆菌O157∶H7 DPO-PCR检测方法, 其检测灵敏度约为94 CFU/mL。与常规PCR方法相比,所建立的DPO-PCR方法对退火温度不敏感,在引物设计和实 验过程中不需要对引物及其退火温度反复优化,同时基于DPO引物的特殊结构又增强了其特异性。DPO-PCR方法 设计简易、特异性强,为致病性微生物的快速准确检测提供了新途径。  相似文献   

5.
Extensive research, intervention equipment, money, and media coverage have been directed at controlling Escherichia coli O157:H7 in beef cattle. However, much of the focus has been on controlling this pathogen postcolonization. This study was conducted to examine the performance, health, and shedding characteristics of beef calves that were vaccinated with an E. coli O157:H7 SRP bacterial extract. These calves had been born to cows vaccinated prepartum with the same vaccine. Cows and calves were assigned randomly to one of four treatments: (i) neither cows nor calves vaccinated with E. coli O157:H7 SRP (CON), (ii) cows vaccinated with E. coli O157:H7 SRP prepartum but calves not vaccinated (COWVAC), (iii) calves vaccinated with E. coli O157:H7 SRP but born to cows not vaccinated (CALFVAC), (iv) cows vaccinated with E. coli O157:H7 SRP prepartum and calves also vaccinated (BOTH). Calves born to vaccinated cows had significantly higher titers of anti-E. coli O157:H7 SRP antibodies (SRPAb) in circulation at branding time (P < 0.001). Upon entry to the feedlot, overall fecal E. coli O157:H7 prevalence was 23 % among calves, with 25 % in the CON treatment group, 19 % in the CALFVAC group, 32 % in the COWVAC group, and 15 % in the BOTH group (P > 0.05). Fecal shedding of E. coli O157 on arrival to the feedlot was not correlated with fecal shedding at slaughter (Spearman's rho = -0.02; P = 0.91). No significant effects of cow or calf E. coli O157:H7 SRP vaccination treatment were found on feedlot calf health or performance (P > 0.05), prevalence of lung lesions or liver abscess (P > 0.05), or morbidity, retreatment, or mortality numbers (P > 0.05). The findings of this study indicate that the timing of vaccination of calves against E. coli O157:H7 may be an important consideration for maximizing the field efficacy of this vaccine.  相似文献   

6.
Cross-contamination of lettuce with Escherichia coli O157:H7   总被引:2,自引:0,他引:2  
Contamination of produce by bacterial pathogens is an increasingly recognized problem. In March 1999, 72 patrons of a Nebraska restaurant were infected with enterohemorrhagic Escherichia coli (EHEC) O157:H7, and shredded iceberg lettuce was implicated as the food source. We simulated the restaurant's lettuce preparation procedure to determine the extent of possible EHEC cross-contamination and growth during handling. EHEC inoculation experiments were conducted to simulate the restaurant's cutting procedure and the subsequent storage of shredded lettuce in water in the refrigerator. All lettuce pieces were contaminated after 24 h of storage in inoculated water (2 x 10(9) CFU of EHEC per 3 liters of water) at room temperature or at 4 degrees C; EHEC levels associated with lettuce increased by > 1.5 logs on the second day of storage at 4 degrees C. All lettuce pieces were contaminated after 24 h of storage in water containing one inoculated lettuce piece (approximately 10(5) CFU of EHEC per lettuce piece) at both temperatures. The mixing of one inoculated dry lettuce piece with a large volume of dry lettuce, followed by storage at 4 degrees C or 25 degrees C for 20 h resulted in 100% contamination of the leaves tested. Microcolonies were observed on lettuce stored at 25 degrees C, while only single cells were seen on leaves stored at 4 degrees C, suggesting that bacterial growth had occurred at room temperature. Three water washes did not significantly decrease the number of contaminated leaves. Washing with 2,000 mg of calcium hypochlorite per liter significantly reduced the number of contaminated pieces but did not eliminate contamination on large numbers of leaves. Temperature abuse during storage at 25 degrees C for 20 h decreased the effectiveness of the calcium hypochlorite treatment, most likely because of bacterial growth during the storage period. These data indicate that storage of cut lettuce in water is not advisable and that strict attention must be paid to temperature control during the storage of cut lettuce.  相似文献   

7.
In this study, five abattoirs in Istanbul were visited between January 2000 and April 2001. During these visits, 330 cattle were selected by a systematic sampling method. Cattle were examined clinically and breed, age, and sex were recorded. Rectal swabs were taken immediately after slaughter. Immunomagnetic separation was performed, and sorbitol-negative colonies were selected on sorbitol MacConkey agar with cefixime and tellurite (CT-SMAC agar). These colonies were checked for 4-methylenebelliferyl-beta-D-glucuronide, indol, rhamnose, and urease activity and motility. Serotypes of bacteria were determined by using antisera specific for Escherichia coli O157 and H7. All cattle selected were clinically healthy. Of 88 sorbitol-negative colonies selected on CT-SMAC agar, isolates from only 14 (4.2%) cattle reacted with anti-O157, and 13 of these isolates also reacted with anti-H7. E. coli O157:H7 was isolated from all breeds, but the numbers of isolates were largest for Holstein and Swiss Brown cows. E. coli O157:H7 was most frequently isolated from 2-year-old cattle. Similarly, it was most frequently isolated from male cattle. E. coli O157:H7 was isolated from cattle slaughtered in four of the five abattoirs studied.  相似文献   

8.
Impact of drip and overhead sprinkler irrigation on the persistence of attenuated Escherichia coli O157:H7 in the lettuce phyllosphere was investigated using a split-plot design in four field trials conducted in the Salinas Valley, California, between summer 2007 and fall 2009. Rifampicin-resistant attenuated E. coli O157:H7 ATCC 700728 (BLS1) was inoculated onto the soil beds after seeding with a backpack sprayer or onto 2- or 4-week-old lettuce plant foliage with a spray bottle at a level of 7 log CFU ml−1. When E. coli O157:H7 was inoculated onto 2-week-old plants, the organism was recovered by enrichment in 1 of 120 or 0 of 240 plants at 21 or 28 days post-inoculation, respectively. For the four trials where inoculum was applied to 4-week-old plants, the population size of E. coli O157:H7 declined rapidly and by day 7, counts were near or below the limit of detection (10 cells per plant) for 82% or more of the samples. However, in 3 out 4 field trials E. coli O157:H7 was still detected in lettuce plants by enrichment 4-weeks post-inoculation. Neither drip nor overhead sprinkler irrigation consistently influenced the survival of E. coli O157:H7 on lettuce.  相似文献   

9.
Six human isolates of Escherichia coli O157:H7 and E. coli (ATCC 11229) were used to determine the concentrations of free chlorine and exposure times required for inactivation. Free chlorine concentrations of 0.25, 0.5, 1.0, and 2.0 ppm at 23 degrees C were evaluated, with sampling times at 0, 0.5, 1.0, and 2.0 min. Results revealed that five of six E. coli O157:H7 isolates and the E. coli control strain were highly susceptible to chlorine, with >7 log10 CFU/ml reduction of each of these strains by 0.25 ppm free chlorine within 1 min. However, comparatively, one of the seven strains was unusually tolerant to chlorine at 23 degrees C for 1 min, with a 4-, 5.5-, 5.8-, and >5.8-log CFU/ml reduction at free chlorine concentrations (ppm) of 0.25, 0.5, 1.0, and 2.0. respectively. Based on these studies most isolates of E. coli O157:H7 have no unusual tolerance to chlorine; however, one strain was exceptional in being recovered after 1-min of exposure of 10(7) CFU/ml to 2.0 ppm of free chlorine. This isolate may be a useful reference strain for future studies on chlorine tolerance of E. coli O157:H7.  相似文献   

10.
Escherichia coli O157:H7 and its significance in foods   总被引:17,自引:0,他引:17  
Escherichia coli O157:H7 was conclusively identified as a pathogen in 1982 following its association with two food-related outbreaks of an unusual gastrointestinal illness. The organism is now recognized as an important cause of foodborne disease, with outbreaks reported in the U.S.A., Canada, and the United Kingdom. Illness is generally quite severe, and can include three different syndromes, i.e., hemorrhagic colitis, hemolytic uremic syndrome, and thrombotic thrombocytopenic purpura. Most outbreaks have been associated with eating undercooked ground beef or, less frequently, drinking raw milk. Surveys of retail raw meats and poultry revealed E. coli O157:H7 in 1.5 to 3.5% of ground beef, pork, poultry, and lamb. Dairy cattle, especially young animals, have been identified as a reservoir. The organism is typical of most E. coli, but does possess distinguishing characteristics. For example, E. coli O157:H7 does not ferment sorbitol within 24 h, does not possess beta-glucuronidase activity, and does not grow well or at all at 44-45.5 degrees C. The organism has no unusual heat resistance; heating ground beef sufficiently to kill typical strains of salmonellae will also kill E. coli O157:H7. The mechanism of pathogenicity has not been fully elucidated, but clinical isolates produce one or more verotoxins which are believed to be important virulence factors. Little is known about the significance of pre-formed verotoxins in foods. The use of proper hygienic practices in handling foods of animal origin and proper heating of such foods before consumption are important control measures for the prevention of E. coli O157:H7 infections.  相似文献   

11.
目的建立PCR-免疫胶体金试纸条法快速检测食品中肠出血性大肠杆菌O157:H7的分析方法。方法通过设计特异性引物建立肠出血性大肠杆菌O157:H7 PCR检测方法并使用免疫胶体金技术以及双抗体夹心法建立PCR产物快速检测试纸条并设计核酸检测展开液;将1株大肠杆菌O157:H7标准菌株和7株其他常见食源性致病菌作为试验菌株,用试验菌株检测PCR-免疫胶体金试纸条方法的检测特异度,并比较PCR-免疫胶体金试纸条法和PCR-琼脂糖凝胶电泳法的检测敏感度。结果 PCR-免疫胶体金法具有良好的特异度,灵敏度比标准琼脂糖凝胶电泳法高100倍。结论本文建立的肠出血性大肠杆菌O157:H7检测PCR-免疫胶体金试纸条法特异度好,灵敏度高,价格低廉,适用于食品中肠出血性大肠杆菌O157:H7的检测。  相似文献   

12.
Behavior of Escherichia coli O157:H7 in leafy vegetables   总被引:1,自引:0,他引:1  
Leafy vegetables, including lettuce and spinach, have been implicated in several outbreaks of foodborne disease caused by Escherichia coli O157:H7, a pathogen of increasing public health significance because of the severity of the gastrointestinal illness and long-term, chronic sequelae that can result from infection. A definitive association between the consumption of leafy vegetables and human disease provides implicit evidence of transfer from animal sources to field crops and retail commodities, including minimally processed or fresh-cut products. Understanding the behavior of E. coli O157:H7 in leafy vegetables during production, after harvest, in storage, during processing, and in packaged fresh-cut products is essential for the development of effective control measures. To this end, previous research on the fate of the species at each step in the production of market-ready leafy vegetables is reviewed in this study. Several critical gaps in knowledge are identified, notably uncertainty about the location of contaminating cells on or in plant tissues, behavior in packaged products stored at low temperatures, and the influence of environmental stresses on growth and infectivity.  相似文献   

13.
Morcilla is a link sausage quite similar to black pudding, consisting of an inert casing stuffed with a mixture of beef blood, fat, and seasonings. Thirty samples of morcilla showed total microbial counts (6.3×103–2.1×108 Cfu/g ), molds and yeasts (8.9×101–6.3×104 Cfu/g), sulfite-reducing microorganism (2.0×101–2.1×102MPN/g); total coliforms (1.4×101–1.1×103 MPN/g); fecal coliforms (7.0–1.5×102MPN/g); Enterobactereaceae (1.6×102–5.0×105 Cfu/g). S. aureus and B. cereus were not detected. E. coli was detected in 76.6% of the samples analyzed. The thermal resistance (D and z-values) of Escherichia coli O157:H7 and E. coli isolated from morcilla were determined in nutrient broth and in a heating menstruun prepared with ground morcilla (discarding the casing) and added fat or starch. Higher fat and starch levels resulted in higher D-values (min) at 54, 58 and 62 °C for both strains. The z-values (°C) for isolated E. coli in nutrient broth (M1), ground morcilla (M2), M2+10% fat (M3), M2+20% fat (M4), M2+10% starch (M5), and M2+20% starch (M6) were 7.9, 7.8, 10.5, 10.4, 10.3, and 10.4, respectively, and for E. coli O157:H7 were 7.8, 7.4, 9.8, 10.2, 10.3, and 10.7. The composition of product affected heat lethality of the two strains of E. coli.  相似文献   

14.
为推动O15 7:H7致病机制的深入研究 ,介绍了近年来对EHECO15 7:H7的基因组和特异性大质粒pO15 7上与细菌致病性有关的主要致病因子的研究进展。  相似文献   

15.
《Food microbiology》2004,21(4):469-473
The bactericidal efficiency of hydrostatic pressure treatment combined with a slow decompression (SD; about 30 s) or a rapid decompression (RD; about 2 ms) against clinically isolated Escherichia coli O157:H7 was investigated in apple juice, orange juice and McIlvaine buffers having the same pH values of the juices used. Effects of the SD and RD treatments on survivability of E. coli O157:H7 cells during storage at 4°C in the juices were also investigated. The RD treatment showed higher inactivation effect than the SD treatment in both the juices and buffers. Untreated E. coli O157:H7 cells were not inactivated during storage for 5 days; however, post-treatment storage after both the SD and RD treatments reduced survivability of E. coli O157:H7 cells in the juices. The degree of the reduction was higher in the cells subjected to the RD treatment than to the SD treatment.  相似文献   

16.
The DNA band patterns generated by polymerase chain reaction (PCR) using the du2 primer and template DNAs from various strains of Escherichia coli and non-E. coli bacteria were compared. Among three to five prominent bands produced, the three bands at about 1.8, 2.7, and 5.0 kb were detected in all of the E. coli O157 strains tested. Some nonpathogenic E. coli and all pathogenic E. coli except E. coli O157 showed bands at 1.8 and 5.0 kb. It seems that the band at 2.7 kb is specific to E. coli O157. Sequence analysis of the 2.7-kb PCR product revealed the presence of a DNA sequence specific to E. coli O157:H- and E. coli O157:H7. Since the DNA sequence from base 15 to base 1,008 of the PCR product seems to be specific to E. coli O157, a PCR assay was carried out with various bacterial genomic DNAs and O157-FHC1 and O157-FHC2 primers that amplified the region between base 23 and base 994 of the 2.7-kb PCR product. A single band at 970 bp was clearly detected in all of the strains of E. coli O157:H- and E. coli O157:H7 tested. However, no band was amplified from template DNAs from other bacteria, including both nonpathogenic and pathogenic E. coli except E. coli O157. All raw meats inoculated with E. coli O157:H7 at 3 x 10(0) to 3.5 x 10(2) CFU/25 g were positive both for our PCR assay after cultivation in mEC-N broth at 42 degrees C for 18 h and for the conventional cultural method.  相似文献   

17.
The direct detection and estimation of concentration of Escherichia coli O157:H7 down to 1 CFU/g of cheese was achieved by conventional plating techniques. Cheese was manufactured with unpasteurized milk inoculated with E. coli O157: H7 at 34 +/- 3 CFU/ml. The numbers of E. coli O157:H7 were monitored during cheese ripening by plating on sorbitol MacConkey agar supplemented with cefixime and potassium tellurite (CT-SMAC) and on CT-O157:H7 ID medium. Using the pour plate method, E. coli O157:H7 colonies could easily be distinguished from non-O157:H7 colonies on CT-O157:H7 ID medium but not on CT-SMAC. Higher numbers of E. coli O157:H7 were detectable with O157:H7 ID medium. Latex agglutination and PCR were used to confirm the identification of typical E. coli O157:H7 colonies, and nontypical colonies as not being E. coli O157:H7. As few as 1 CFU/g of cheese could be detected. E. coli O157:H7 also was detected in deliberately contaminated milk at concentrations as low as 4 CFU/10 ml.  相似文献   

18.
为探讨冷冻后残存的大肠杆菌O157:H7(Escherichia coli O157:H7)在解冻后的存活情况,本研究首先比较4 株E. coli O157:H7冷冻后的死亡和损伤情况,进而采用无营养的磷酸盐缓冲液作为基质研究冷冻后不同解冻方式对E. coli O157:H7存活的影响。结果表明:4 株E. coli O157:H7 -20 ℃冷冻24、48、72 h后均发生了一定程度的死亡和损伤,冷冻时间越长细菌致死和致伤程度越明显,且存在菌株差异,冷冻72?h时菌株CICC21530的损伤率最高,为87.70%。采用混合菌株进行解冻实验,4?株E.?coli?O157:H7磷酸盐缓冲液菌液冷冻后立即置于20、30、37?℃解冻,细菌发生了进一步的死亡,解冻温度越高死亡越明显,3?个温度组在解冻48?h时菌落数均显著低于冷冻72?h时菌落数(P<0.05)。进一步探讨缓慢解冻方式对菌体存活的影响,菌液冷冻后先置于4?℃一定时间(0、2、6、12?h),再置于37?℃不同时间(5、10、30?min)观察菌株存活情况,结果表明4?℃缓慢解冻时间越长,越有利于细菌的存活,4?℃、12?h/37?℃、5~30?min解冻方式下改良山梨醇麦康凯琼脂上菌落数仍显著低于胰蛋白胨大豆琼脂上的菌落数(P<0.05),表明仍有损伤菌的存在。本实验提示采用缓慢解冻反而有利于残存菌的存活,冷冻食品风险评估时应重视残存菌尤其是损伤菌的检测和控制。  相似文献   

19.
以大肠杆菌O157:H7为抗原免疫产蛋母鸡,从鸡卵黄中提取免疫球蛋白,建立抗大肠杆菌O157:H7的特异性IgY的效价检测方法,并研究母鸡的免疫应答性,以及抗体的提取方法和体外抑菌效果.研究结果表明,初次免疫后第6d,在卵黄中可以检测到抗大肠杆菌O157:H7 IgY,效价为1:7200;经加强免疫后效价迅速上升,至第44d达到最高效价1:230400;免疫后360 d,效价仍维持在1:7200.用水稀释法、硫酸铵分级盐析和Sephadex G-25凝胶过滤以提取IgY,提纯后IgY的效价是之前的4倍.SDS-PAGE鉴定抗体的纯度,电泳图谱中出现抗体的轻链和重链两条带.体外抑菌实验表明,IgY能抑制大肠杆菌O157:H7的生长.  相似文献   

20.
This study examined the effects of three chelating agents (EDTA, disodium pyrophosphate [DSPP], and pentasodium tripolyphosphate [PSTPP]) on the inhibition of the growth of Escherichia coli O157:H7 by lysozyme. The objective of this study was to identify replacement chelators that exhibit synergistic properties similar to those of EDTA. The inhibitory effects of EDTA at 300 to 1,500 microg/ml and of DSPP and PSTPP at 3,000 to 15,000 microg/ml in combination with lysozyme at 200 to 600 microg/ml for up to 48 h at pHs of 6.0, 7.0, and 8.0 on four strains of E. coli O157:H7 was studied with the use of a microbroth dilution assay. The addition of EDTA enhanced lysozyme's inhibitory effect on strains of E. coli O157:H7. EDTA at > or = 300 microg/ml combined with lysozyme at 200 to 600 microg/ml was sufficient to inhibit the growth of the strains at pHs of 6.0 and 8.0. At pH 7.0, lysozyme at 200 to 600 microg/ml and EDTA concentrations of > or = 1,000 microg/ml were effective in inhibiting three of the four strains. DSPP at pH 6.0 was inhibitory at > or = 10,000 microg/ml when combined with lysozyme at 200 to 300 microg/ml. In contrast, PSTPP increased the inhibitory activity of lysozyme more effectively at pH 8.0. Lysozyme at 200 to 600 microg/ml was effective against two strains of E. coli O157:H7 when used in conjunction with PSTPP at > or = 5,000 microg/ml. The remaining strains were inhibited by PSTPP at > or = 10,000 microg/ml. Our results indicate that inhibition occurred with each lysozyme-chelator combination, but the concentrations of phosphates required to increase the antimicrobial spectrum of lysozyme against E. coli O157:H7 were higher than the EDTA concentrations required to achieve the same effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号