首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Utilization of Mixed Uranium–Plutonium Oxide (MOX) fuel in VVER-1000 reactors envisages the core physics analysis using computational methods and validation of the related computer codes. Towards this objective, an international experts group has been established at OECD/NEA. The experts group facilitates sharing of existing information on physics parameters and fuel behaviour. Several benchmark exercises have been proposed by them with intent to investigate the core physics behaviour of a VVER-1000 reactor loaded with 2/3rd of low enriched uranium (LEU) fuel assemblies (FA) and 1/3rd of weapons grade mixed oxide (MOX) FA. In the present study an attempt is made to analyse ‘AVVER-1000LEUandMOXAssemblyComputationalBenchmark’ and predict the neutronics behaviour at the lattice level. The lattice burnup code EXCEL, developed at Light Water Reactor Physics Section, BARC is employed for this task. The EXCEL code uses the 172 energy group ‘JEFF31GX’ cross-section library in WIMS-D format. Assembly level fuel depletion calculations are performed up to a burnup of 40 MWD/kg of heavy metal (HM). Studies are made for the parametric variations of fuel and moderator temperatures, coolant density and boron content in the coolant. Both operational and off-normal states are analysed to determine the corresponding infinite neutron multiplication factor (k). Pin wise isotopic compositions are computed as a function of burnup. Isotopic compositions in different annular regions of Uranium–Gadolinium (UGD) pin, fission rate distributions in UGD, UO2 and MOX pin cells are also computed. The predicted results are compared with the benchmark mean results.  相似文献   

2.
As part of an effort to test the ability of current transport codes to treat reactor core problems without spatial homogenization, the lattice code HELIOS was employed to perform criticality calculations. The test consists in seven-group calculations of the C5 MOX fuel assembly problem specified by Cavarec et. al. [1]. This problem, known as C5G7 MOX Benchmark, is described in the Benchmark Specification [2] and comprises two cases — two and three-dimensional geometry. There are four fuel assemblies — two with MOX fuel, the other two with UO2 fuel. Each fuel assembly is made up of a 17×17 lattice of square fuel-pin cells. Fuel pin compositions are specified in the Benchmark Specification, which also provides seven-group transport-corrected isotropic scattering cross-sections for U02, the three MOX enrichments, the guide tubes, the fission chamber and the moderator. This paper preset is the methodology employed in solving the C5G7 MOX Fuel Assembly Problem using the transport code HELIOS.  相似文献   

3.
王侃  宋鸣 《核动力工程》1997,18(1):29-33
在应用中子扩散方程六角形节块法程序时,往往需要计算组件内的精细功率分布。本文简要叙述了一种利用节块法程序的结果信息,再构造六角形组件内精细功率分布的计算方法,根据此方法编制了计算机程序HEXPIN。与细网有限差分程序的结果相比较表明:HEXPIN在堆芯功率峰值处的最大计算误差小于1%。  相似文献   

4.
5.
基于蒙特卡罗方法的三维燃耗计算研究   总被引:2,自引:1,他引:1  
采用通过编写连接MCNP程序和ORIGEN2程序的接口处理程序的方法进行快中子系统的燃耗计算。由MCNP、ORIGEN2、接口处理程序和截面文件组成的软件系统可用于燃料或堆芯非均匀布置快中子系统的燃料同位素成分和燃耗反应性损失计算,在燃耗反应性损失计算中采用了伪裂变产物的方法。介绍程序系统的研制情况,并给出用该软件系统计算中国实验快堆首炉堆芯和OECD/NEAMOX燃料快堆基准题的燃耗计算结果。  相似文献   

6.
New benchmark models with respect to criticality data are established on the basis of seven uranium-fueled assemblies constructed in the ninth experimental series at the fast critical assembly (FCA) facility. By virtue of these FCA-IX assemblies, where the simple combinations of uranium fuel and diluent (graphite and stainless steel) in their core regions were systematically varied, the neutron spectra of these benchmark models cover those of various reactor types, from fast to sub-moderated reactors. The sample calculations of the benchmark models by a continuous-energy Monte Carlo (MC) code showed obvious differences between even the latest versions of two major nuclear data libraries, JENDL-4.0 and ENDF/B-VII.1. The present benchmark models would be well suited for the assessment and improvement of the nuclear data for 235U, 238U, graphite, and stainless steel. In addition, the verification of the deterministic method was performed on the benchmark models by comparison with the MC calculations. The present benchmark models are also available to users of deterministic calculation codes for the assessment and improvement of nuclear data.  相似文献   

7.
反应堆堆芯先进中子学模拟软件SCAP-N研发   总被引:2,自引:1,他引:1       下载免费PDF全文
堆芯中子学计算是反应堆设计分析的基础,为提高堆芯中子学计算的模拟分辨率与计算精度,开发了反应堆堆芯先进中子学模拟软件(SCAP-N)。该程序首先根据轴向特征对堆芯进行分层,并逐层进行二维堆芯非均匀输运计算,再采用超级均匀化方法(SPH)获得栅元等效均匀化截面,最后进行三维堆芯逐棒(pin-by-pin)输运计算,获得堆芯有效增殖因子与精细棒功率分布。为提高程序计算效率,采用分布式/共享式(MPI/OPENMP)混合并行方式对程序进行了并行化开发。利用虚拟反应堆(VERA)系列基准例题及美国先进非能动压水堆(AP1000)启动物理试验实测数据对程序进行了测试验证。结果表明,相比于商用核设计程序系统,SCAP-N程序采用的逐棒输运技术能够提高堆芯中子学的计算精度。与同类型高精度中子学程序相比,SCAP-N具有更高的计算效率,可进一步提高核电厂的经济性及运行灵活性。   相似文献   

8.
An analysis of the MOX critical experiments BASALA was performed to verify the pin-by-pin core analysis method using a three-dimensional direct response matrix. The BASALA experiments simulate full MOX BWR cores, and they were carried out in the EOLE critical facility of the French Atomic Energy Commission (CEA) by the Nuclear Power Engineering Corporation (NUPEC) in collaboration with CEA. The BASALA experimental cores are very heterogeneous because their size is much smaller than that of commercial power plants. The main features of the pin-by-pin core analysis method using the three-dimensional direct response matrix are that the response matrix can reflect the intra-assembly heterogeneous effect, the diffusion approximation is not involved, and the fuel rod fission rate can be directly evaluated. The maximum difference of the critical k-effective values among all nine cores analyzed was about 0.4% Δk. The root mean square differences between the calculated and measured radial fuel rod fission rate distributions in the test assembly of all cores were within 1.8% and nearly comparable to measurement error. The calculated results of the reactivity worth agreed with the measured results within 9%. These good agreements mean that the pin-by-pin core analysis method using the three-dimensional direct response matrix accurately reflects the effects of the intra- and inter-assembly heterogeneities in heterogeneous systems like the BASALA experimental cores.  相似文献   

9.
用NSLINK程序系统将当今4个最新的评价核数据库中的有关核素加工制作成了WIMS69群结构的AMPX主库,用校正后的PASC-1程序系统计算了美国截面评价工作组推荐的10个热堆基准装置的积分量,并与国外同类计算做了比较,结果符合较好。用NJOY程序系统又制作了上述4个评价库的TPFAP程序接口的69群库,用CMB程序计算了6个栅元装置的k∞,并对结果进行了分析比较。  相似文献   

10.
为验证核设计程序对燃料组件、铍组件和铝组件的计算可靠性,对六边形套管型燃料堆芯(HCTFR)临界质量测量试验数据进行了验证计算和偏差分析。通过分析不同位置铝组件的反应性差异,提出了新的近活性区铝组件计算模型,将铝组件近活性区布置方案的计算偏差从2.2%降低至0.1%,为堆芯核设计程序的工程验证奠定了较好的基础。   相似文献   

11.
三维六角形组件压水堆堆芯燃料管理计算及程序系统研究   总被引:2,自引:0,他引:2  
王涛  谢仲生  程和平  张少泓  张颖 《核动力工程》2003,24(6):497-500,513
介绍所研制的WWER型压水堆堆芯燃料管理计算程序系统TPFAP-H/CSIM-H,六角形组件均匀化计算程序TPFAP-H是在压水堆正方形组件程序TPFAP的基础上,采用穿透概率法与响应矩阵方法相结合计算六角形组件内中子能谱分布,并考虑六角形栅元特点改造开发而成的CSIM-H是以先进六角形节块扩散程序为基础.参照SIMULATE程序功能而研制的物理-热工水力耦合的三维六角形节块PWR堆芯燃料管理程序两者通过接口程序LINK连接起来,可以考虑燃耗,功率、慢化剂密度变化.控制棒、氙等参数的多种反馈效应对IAEA的WWER-1000型Kalinin核电厂基准问题的校算的结果表明,临界硼浓度、功率和燃耗分布等结果与国际各研究机构的结果吻合良好,偏差均在工程要求之内。  相似文献   

12.
The reactivity of nuclear fuel decreases with irradiation (or burnup) due to the transformation of heavy nuclides and the formation of fission products. Burnup credit studies aim at accounting for fuel irradiation in criticality studies of the nuclear fuel cycle (transport, storage, etc…). The principal objective of this study is to evaluate the potential capabilities of a newly developed burnup code called “BUCAL1”. BUCAL1 differs in comparison with other burnup codes as it does not use the calculated neutron flux as input to other computer codes to generate the nuclide inventory for the next time step. Instead, BUCAL1 directly uses the neutron reaction tally information generated by MCNP for each nuclide of interest to determine the new nuclides inventory. This allows the full capabilities of MCNP to be incorporated into the calculation and a more accurate and robust analysis to be performed. Validation of BUCAL1 was processed by code-to-code comparisons using predictions of several codes from the NEA/OCED. Infinite multiplication factors (k) and important fission product and actinide concentrations were compared for a MOX core benchmark exercise. Results of calculations are analysed and discussed.  相似文献   

13.
A benchmark exercise for thorium–plutonium fuel, based on experimental data, has been carried out. A thorium–plutonium oxide fuel rodlet was irradiated in a PWR for four consecutive cycles, to a burnup of about 37 MWd/kgHM. During the irradiation, the rodlet was inserted into a guide tube of a standard MOX fuel assembly. After the irradiation, the rod was subjected to several PIE measurements, including radiochemical analysis. Element concentrations and radial distributions in the rodlet, multiplication factors and distributions within the carrier assembly of burnup and power were calculated. Four participants in the study simulated the irradiation of the MOX fuel assemblies including the thorium–plutonium rodlet using their respective code systems; MCBurn, HELIOS, CASMO-5 and ECCO/ERANOS combined with TRAIN. The results of the simulations and the measured results of the radiochemical analysis were compared and found to be in fairly good agreement when the calculated results were calibrated to give the same burnup of the thorium–plutonium rodlet as that experimentally measured. Average concentrations of several minor actinides and fission products were well reproduced by all codes, to the extent that can be expected based on known uncertainties in the experimental setup and the cross section libraries. Calculated results which could not be confirmed by experimental measurement were compared and only two significant anomalies were found, which can probably be addressed by limited modifications of the codes.  相似文献   

14.
Three-dimensional pin-by-pin core analysis is considered to be a candidate for the next-generation BWR core calculation method. In our previous study, the applicability of the transport and burnup calculations for a three-dimensional pin-by-pin BWR core analysis was investigated. However, the thermal-hydraulics calculation has not yet been studied in this framework. In the conventional core analysis code, the bundlewise thermal-hydraulics calculation is adopted. In the actual core analysis, the power distribution inside a fuel assembly is tilted at the region adjacent to a control blade or the core peripheral region. In these regions, the consideration of the subchannel-wise void distribution has an impact on the fission rate distribution. Therefore, an evaluation of the detailed void distribution inside an assembly, i.e., the incorporation of the subchannel wise void distribution, is desirable for the pin-by-pin BWR core analysis. Although several subchannel analysis codes have been developed, these subchannel analysis codes generally require a large computational effort to estimate the subchannel-wise void distribution in a whole BWR core. Therefore, to analyze a whole BWR core within a reasonable computation time, it was necessary to apply a fast subchannel analysis code. In this paper, a quick subchannel analysis code dedicated to pin-by-pin BWR core analysis is newly developed, and the void distribution of the present subchannel analysis code is compared with the prevailing subchannel analysis code NASCA using three-dimensional single-assembly geometries. Since the present subchannel analysis code is used for a coupled neutronics/thermal-hydraulics analysis, the results of the coupling calculation are also compared with those of NASCA. The calculation result indicates that the void distribution difference between NASCA and the present subchannel analysis code is slightly less than 10%. This result indicates that the prediction accuracy of the present subchannel analysis code will be reasonably appropriate for a pin-by-pin BWR core analysis. Furthermore, the results show that the calculation time of the present subchannel analysis code is only 10 min for a hypothetical three-dimensional ABWR quarter-core geometry using a single CPU. This calculation time is sufficient for a pin-by-pin BWR core analysis.  相似文献   

15.
In the framework of joint effort between the Nuclear Energy Agency (NEA) of OECD, the United States Department of Energy (US DOE), and the Commissariat a l'Enerige Atomique (CEA), France a coupled three-dimensional (3D) thermal-hydraulics/neutron kinetics benchmark was defined. The overall objective of OECD/NEA V1000CT benchmark is to assess computer codes used in analysis of VVER-1000 reactivity transients where mixing phenomena (mass flow and temperature) in the reactor pressure vessel are complex. Original data from the Kozloduy-6 Nuclear Power Plant are available for the validation of computer codes: one experiment of pump start-up (V1000CT-1) and one experiment of steam generator isolation (V1000CT-2). Additional scenarios are defined for code-to-code comparison. As a 3D core model is necessary for a best-estimate computation of all the scenarios of the V1000CT benchmark, all participants were asked to develop their own core coupled 3D thermal-hydraulics/neutron kinetics models using the data available in the benchmark specifications and a common cross-section library. The first code-to-code comparisons based on the V1000CT-1 Exercise 2 specifications exhibited unacceptable discrepancies between two sets of results. The present paper focuses on the analysis of the observed discrepancies. The VVER-1000 3D neutron kinetics models are based on cross-section data homogenized on the assembly level. The cross-section library, provided as part of the benchmark specifications, thus consists in a set of parameterized two group cross sections representing the different assemblies and the reflectors. The origin of the observed large discrepancies was found mainly to lie in the methods used to solve the diffusion equation. The VVER reflector properties were also found to enhance discrepancies by increasing flux gradients at the core/reflector interface thus highlighting more the difficulties in some codes to handle high exponential flux gradients. This paper summarizes the different steps applied to analyze the neutronic codes and their predictions as well as the impact of cross-section generation procedures.  相似文献   

16.
国际上的MOX燃料技术目前已较为成熟,且已有在压水堆中运行的工程经验。本文对MOX燃料组件的中子学性能进行了分析,对其在我国现役M310堆芯应用的可行性进行了研究,得到了M310堆芯由全部使用UO2燃料组件向使用30%的MOX燃料组件过渡的堆芯燃料管理方案,并对使用MOX燃料组件的堆芯的部分中子学参数进行了初步分析。结果表明:使用30%的MOX燃料组件的堆芯可达到与全UO2堆芯相当的循环长度;堆芯反应性控制能力可满足要求;慢化剂温度系数、Doppler温度系数、Doppler功率系数、氙和钐的动态特性均趋向使堆芯运行更加安全和稳定。本文的研究结果可为MOX燃料在M310堆芯中应用的进一步研究提供参考。  相似文献   

17.
18.
对于堆物理工程设计中常用的碰撞几率程序CPXY和两维S_N计算程序DOT3.5,以及最近研制的穿透几率程序TPXY,本文简述了其理论模型,并着重就它们的计算精度,计算时间和网格的划分,进行了系统的数值研究。所计算分析的组件基准问题和例题,复盖了目前PWR和BWR堆芯组件的几何结构和核不均匀性。研究结果表明,穿透几率程序TPXY是当前工程上实用的计算效率最高的组件计算程序。  相似文献   

19.
In 1999, the IAEA has initiated a Coordinated Research Project on “Updated Codes and Methods to Reduce the Calculational Uncertainties of the LMFR Reactivity Effects.” Three benchmark models representing different modifications of the BN-600 fast reactor have been sequentially established and analyzed, including a hybrid core with highly enriched uranium oxide and MOX fuel, a full MOX core with weapons-grade plutonium, and a MOX core with plutonium and minor actinides coming from spent nuclear fuel. The paper describes studies for the latter MOX core model. The benchmark results include core criticality at the beginning and end of the equilibrium fuel cycle, kinetics parameters, spatial distributions of power, and reactivity coefficients obtained by employing different computation tools and nuclear data. Sensitivity studies were performed to better understand in particular the influence of variations in different nuclear data libraries on the computed results. Transient simulations were done to investigate the consequences of employing a few different sets of power and reactivity coefficient distributions on the system behavior. The obtained results are analyzed in the paper.  相似文献   

20.
The C5G7 MOX Benchmarkfor current codes has been proposed as a basis to test the ability of current transport codes to teat reactor core problems without spatial homogenization. This is a seven-group form of the C5G7 MOX fuel assembly problem specified by Cavarec et.al. There are four fuel assemblies, two contain UO2 fuel elements and two contain MOX fuel elements. Seven group cross sections for different kinds of fuel (three enrichment of MOX and UO2), the guide tubes, the fission chambers and moderator are given. Thus this benchmark is just a mathematical test that allows testing the accuracy of the neutron transport equation solution with different methods and codes. In this paper the General First Collision Probabilities Method (GFCPM) is used to analyze the two-dimensional configuration of this benchmark. A linear flux approximation is used in the reflector. Different calculation schemes in the reflector region have been used. The output results, Keff and the pin powers have been analyzed. The convergence of the results has been analyzed both as a function of the subdivision scheme of the reflector region and of the number of points in the calculation scheme for general first collision probabilities. Comparison has been carried out for Keff and pin powers both with the reference results (external convergence) and with the results of different approximations of GFCPM (internal convergence).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号