首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
以湿法磷酸和硫酸亚铁分别为磷源和铁源,通过合成、沉淀过程制备磷酸铁,研究了不同摩尔投料比对合成磷酸铁质量的影响,并以制备的磷酸铁为磷源和铁源采用溶胶凝胶法制备了磷酸铁锂材料.采用了X射线衍射、扫描电子显微镜等手段对合成的磷酸铁锂材料结构和微观形貌进行表征,同时考察了其电化学性能.结果表明:在湿法磷酸和硫酸亚铁摩尔比为1∶1时合成出的磷酸铁中磷质量分数为16.38%,铁质量分数为29.30%,得到的产物最为接近二水磷酸铁;用该磷酸铁制备的磷酸铁锂正极材料在0.1C倍率下充放电,其首次放电比容量达144.4 mAh/g,40次充放电循环后放电容量能达到141.6 mAh/g,衰减率为1.94%,循环倍率性能优良.  相似文献   

2.
采用二氧化钛溶胶作为掺杂剂,经过450℃和750℃两段烧结制备得到橄榄石型结构的掺钛磷酸亚铁锂微米样品.研究表明,在30℃下,采用0.1C、2C和10C倍率电流充放电时,掺钛磷酸亚铁锂第一循环的放电容量分别为136、114和98 mAh·g(-1).掺钛改善磷酸亚铁锂大电流放电性能是由于掺钛引起橄榄石结构的晶胞的收缩而更稳定,导致在电化学体系中掺钛磷酸亚铁锂的电荷传递阻抗减小,锂离子扩散系数明显增大.  相似文献   

3.
以还原铁粉和磷酸为原料,通过过氧化氢的辅助氧化制备了二水磷酸铁,并利用扫描电子显微镜、粒度分析仪、X衍射分析仪、红外光谱和热重分析仪,对其形貌、晶体结构与化学组成进行表征。实验结果表明溶铁效果最佳的条件为反应温度60℃~65℃,磷铁摩尔比为2.1∶1。在60℃条件下向磷酸二氢亚铁溶液中加入过氧化氢并在60℃条件下陈化2 h,获得产率可达97.3%的略带粉色的二水磷酸铁。结果表明所得的二水磷酸铁材料可用于正极材料磷酸铁锂的生产。  相似文献   

4.
为提高锂离子电池正极材料硅酸亚铁锂(Li2FeSiO4)的容量和倍率性能,以酒石酸为碳源、尿素为氮源,用溶胶凝胶法制备氮掺杂碳包覆硅酸亚铁锂复合材料(NCLFS),通过元素分析、XRD、SEM、拉曼光谱、XPS、恒电流充放电测试和交流阻抗谱等方法对样品的结构及电化学性能进行表征。结果表明:NCLFS复合材料由平均粒径为23 nm的Li2FeSiO4纳米晶组成,较小的粒径能够缩短锂离子扩散路径,提高锂离子的迁移速率;N的引入,提高了NCLFS材料的电导率;与无尿素掺杂的CLFS材料相比,NCLFS复合材料表现出了更高的比容量、优异的倍率性能和循环稳定性,0.2 C放电倍率下,放电比容量高达223.2 mA·h/g(相当于1.34Li+),循环100周后仍能保持192.9 mA·h/g。  相似文献   

5.
以废弃磷化渣为原料, 利用酸液水热过滤法对磷化渣提纯。将所得纯度较高的磷酸铁为铁源, 通过加入锰 盐来制备含有掺杂锰元素的前驱体, 经过高温还原后可得到掺杂锰元素的磷酸亚铁锂/碳电池正极材料。利用X 射 线衍射仪、X 射线荧光光谱仪、扫描电子显微镜和LAND 测试仪对不同组成的磷酸铁锂/碳电池正极材料的颗粒形 貌、物相及扣式电池的电化学性能进行表征。结果表明: 掺杂锰元素的磷酸亚铁锂/碳材料在大倍率下仍能保持较高 的容量保持率, 这对于制作大倍率电池具有重要的意义。  相似文献   

6.
以废弃磷化渣为原料,利用酸液水热过滤法对磷化渣提纯。将所得纯度较高的磷酸铁为铁源,通过加入锰盐来制备含有掺杂锰元素的前驱体,经过高温还原后可得到掺杂锰元素的磷酸亚铁锂/碳电池正极材料。利用X射线衍射仪、X射线荧光光谱仪、扫描电子显微镜和LAND测试仪对不同组成的磷酸铁锂/碳电池正极材料的颗粒形貌、物相及扣式电池的电化学性能进行表征。结果表明:掺杂锰元素的磷酸亚铁锂/碳材料在大倍率下仍能保持较高的容量保持率,这对于制作大倍率电池具有重要的意义。  相似文献   

7.
采用高温固相法合成了系列具有橄榄石结构的掺钠磷酸亚铁锂样品.通过X射线衍射分析、充放电循环实验、循环伏安、交流阻抗等现代实验方法研究了掺钠样品的结构及理化性能.研究表明,理论组成为LiNa0.015Fe0.96PO4/C的微米掺钠磷酸亚铁锂在2C倍率电流下充放电时,样品第1和第250循环的放电容量分别为127.9 mAh·g-1和124.1 mAh·g-1,250循环的容量衰减率为3.0%.掺钠明显改善了磷酸亚铁锂中锂离子的扩散性能.  相似文献   

8.
磷酸铁锂被认为是最有可能应用于锂离子动力电池的正极材料.采用化学研磨法制备了磷酸铁锂,并对其结构和电化学性能进行了研究.结果表明:相对于传统高温固相法,化学研磨法可以有效细化磷酸铁锂的颗粒和晶粒,所得材料0.1 C放电容量为132 mAh/g,明显高于传统固相法112 mAh/g的容量.  相似文献   

9.
磷酸铁锂作为动力锂离子电池的正极材料的首选,正逐渐走向市场.以廉价的Li3PO4,FePO4,Fe粉为原料,一步合成了LiFePO4/C正极材料,系统研究了葡萄糖、蔗糖和柠檬酸三种不同的碳源对磷酸铁锂性能的影响.采用TG-DTA,XRD,SEM,TEM等手段对产物进行了表征,并研究了其电化学性能.实验结果表明,以葡萄糖为碳源的LiFePO4/C性能最好,样品颗粒呈球形,表面光滑,分散性好,颗粒表面包覆有2 nm厚的石墨碳层,颗粒之间有碳纤维连接.该样品在0.1 C充放电时首周放电容量达到162.1 mAh/g,20周之后仍然保持在155 mAh/g,显示出良好的循环性能.  相似文献   

10.
采用水解法制得纯相掺氟硅酸亚铁锂正极材料.通过XRD衍射、充放电实验、交流阻抗谱、红外光谱、热重等现代手段,研究了所制备的样品的电化学性能.研究表明,通过400、600℃两步烧结可制得具有单斜结构(空间群P21/n)的Li2.05FeSiO4F0.02/C.制备的扣式电池在55℃下,分别以0.3C、1C、2C倍率电流连续充放电30循环时,第1循环的容量分别为116.8、106.5、99.2 mAh.g-1.掺氟改善了硅酸亚铁锂的电化学性能.  相似文献   

11.
为了研发高性能的锂离子电池负极材料,采用水热法合成了Bi2S3-MoS2/石墨烯复合材料,利用X-射线衍射(XRD)、扫描电镜(SEM)、高分辨透射电镜(HRTEM)、热重分析(TGA)和X-射线光电子能谱(XPS)对复合材料进行表征,讨论复合材料的微观结构对电化学储锂性能的影响. 特别是,当Bi与Mo的物质的量之比为1∶4时,Bi2S3-MoS2/石墨烯的电化学储锂可逆比容量可以达到1 140 mA·h/g,并具有稳定的循环性能. 当充放电电流密度为1 000 mA/g时,其高倍率特性为886 mA·h/g. Bi2S3-MoS2/石墨烯复合材料优异的电化学储锂性能主要由于MoS2具有更少的层数和较多的边缘以及Bi2S3纳米粒子具有更均匀的粒径,并能很好地分散在石墨烯表面,增强了复合材料容纳锂离子的能力,改善了储锂电极过程的动力学性能.  相似文献   

12.
采用固相法制备了具有橄榄石型结构的微米Li1.12Fe0.98Co0.02PO4/C样品.通过充放电循环、循环伏安实验、交流阻抗、XRD衍射、红外光谱、扫描电镜等现代技术研究了制备的样品的电化学性能.研究表明,在2 C倍率电流下,制备的Li1.12FePO4/C和Li1.12Fe0.98Co0.02PO4/C样品第1循环的放电容量分别为64.8和108.9 mAh.g-1,第30循环的放电容量分别为67.3和110.1 mAh.g-1.因此,掺钴的富锂Li1.12Fe0.98Co0.02PO4/C样品具有明显改善的大电流放电性能.  相似文献   

13.
为了研发比容量高和循环性能稳定的电化学储锂电极材料,用二甲基咪唑钴(ZIF-67)作为Co源前驱体,通过一步水热法制备Z-CoS2-MoS2/rGO(还原氧化石墨烯)复合材料,研究微观结构和电化学储锂性能. 结果表明,与采用CoCl2作为钴源制得的CoS2-MoS2/rGO相比,Z-CoS2-MoS2/rGO复合材料中CoS2粒子有着更加细小和较均匀的粒径,很好地分散在MoS2和rGO表面,形成了相应的异质结构. 作为电化学储锂电极材料,Z-CoS2-MoS2/rGO的可逆比容量可以达到1 092 mA·h/g,经900次循环后在500 mA/g电流密度下保持了941 mA·h/g的储锂可逆比容量,显示了稳定的充放电循环性能. Z-CoS2-MoS2/rGO优异的电化学储锂性能主要归因于该双金属硫化物复合材料具有较多的电化学储锂电极反应电对以及复合材料中CoS2纳米颗粒、MoS2纳米片和rGO之间均匀的复合及所形成的异质结构.  相似文献   

14.
使用液相法制备无定形二水合磷酸铁,并将其在不同的温度下灼烧获得一系列样品.使用X射线粉末衍射仪、透射电子显微镜等表征了样品.测试部分样品的充放电性能.样品T330在0.1 mA/cm2的电流密度下,第二次循环的放电容量达到111.2 mAh/g.灼烧温度较低时,样品脱水不完全;灼烧温度高时,样品由无定形转变为晶体且颗粒尺寸变大;这两个因素都使样品的放电容量下降.  相似文献   

15.
1INTRODUCTION Rapiddevelopmentofmicroelectronicsinre centyearsrequiresminiaturizationofpowersources.Toreducethesizeandcostofbatteries,electronicsmanufacturersareincreasinglyinterest edinthin filmrechargeablebatteries[1].Thesebatterieshaveauniqueadvantagethattheycanbeincorporatedintothesameintegratedcircuitwithotherelectronicelements.Formanyapplications,thethin filmbatteriesneedtohavealargerchar gingcapacityandabettercyclicstability.Manymaterials,suchasV6O13,V2O5,LiMn2O4,Li CoO2andLiN…  相似文献   

16.
为解决高温烧结制备的锂离子电池负极材料Li4Ti5O12易团聚、形貌差的问题,采用水热低温烧结法,以钛酸丁酯、氢氧化锂分别为钛源和锂源,异丙醇为溶剂,制备纯相Li4Ti5O12。用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和比表面测试仪对样品进行表征,采用恒流充放电法对钛酸锂进行电化学性能评价。结果表明,在400℃低温煅烧后可得到单一纯相尖晶石型Li4Ti5O12,所制备样品为具有大比表面积的纳米絮状粉体,表现出良好的电化学性能,在常温条件下,以0.1C倍率进行充放电,首次放电容量达到155.7mA·h/g,经50次循环后容量仍保持约143mA·h/g,容量保持率达到91.8%。  相似文献   

17.
以钛酸四丁酯、乙酸锌、醋酸锂、苯胺为原料,通过溶胶?凝胶和化学氧化聚合的方法制备了钛酸锂锌/聚苯胺复合材料。利用X射线衍射(XRD)、红外光谱(IR)、扫描电子显微镜(SEM)、透射电镜(TEM)和电化学测试等手段对材料进行了表征及分析。结果表明,复合材料中的聚苯胺为无定型结构,且未引入杂质。当聚苯胺的质量分数为5.3%、电流密度为0.1 A/g时,首次放电比容量为330.0 (mA·h)/g;恒流充放电100圈后,仍然可保持281.3 (mA·h)/g的高放电比容量。  相似文献   

18.
在锂离子电池众多负极材料中,硅具有超高的理论比容量(4 200 mA·h/g)和较低的嵌锂电位(约为0.4 V vs Li/Li+),是制备高能量、高功率锂离子电池理想的负极材料。然而,在嵌/脱锂过程中,硅负极巨大的体积变化造成电极材料严重的结构破坏和快速的容量衰减。梳理了硅作为锂离子电池负极材料的储锂机制、结构演变、界面反应和动力学行为等方面的研究,总结了表面和界面改性在锂离子电池硅基负极材料中应用的最新进展,阐述内容主要包括硅电极的表面修饰、电解液的优化和黏结剂的开发等,并对硅负极材料表面和界面改性进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号