首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
朝鲜某复杂难选钽铌锆矿选矿试验研究   总被引:1,自引:0,他引:1  
针对朝鲜某大型碱性花岗岩型钽铌锆矿床矿石化学成分复杂,有用矿物嵌布粒度细,有用矿物之间以及与脉石矿物之间解离性差的特点,采用细磨-脱泥-钽铌锆混合浮选流程处理该矿石,在原矿Nb2O5、ZrO2、Ta2O5品位分别为1.17%、3.12%、0.046%情况下,最终可获得Nb2O5、ZrO2、Ta2O5品位分别为9.43%、24.95%、0.36%,回收率分别为77.37%、76.77%、75.13%的钽铌锆混合精矿。  相似文献   

2.
某钽铌原矿经“阶段磨矿—阶段重选”工艺获得回收率大于90%的钽铌精矿。经化学分析,钽铌尾矿中钽铌品位较低,但有价组分锂含量较高且赋存在云母中,钾长石和钠长石含量也较高。为提高矿产资源利用率,回收钽铌尾矿中的其他有价矿物,对钽铌尾矿进行了综合回收试验研究。试验考虑优先回收锂云母和长石,钽铌可作为副产品富集。但由于该尾矿中Fe2O3含量为0.17%,会影响长石产品的白度,因此综合回收需要采用强磁选工艺除铁回收长石,同时采用浮选法回收锂云母、重选法富集钽铌。在优化条件试验的基础上进行了全流程综合回收试验,最终可获得长石产品(产率71.48%、Fe2O3≤0.006%)、锂云母精矿(Li2O品位3.51%、回收率77.66%)和钽铌精矿(Ta2O5品位4.06%、回收率30.17%,Nb2O5品位4.07%、回收率36.39%),较好地实现了该钽铌尾矿中有价矿物的综合回收利用。  相似文献   

3.
湖南某钾钠长石矿选矿试验   总被引:1,自引:0,他引:1  
湖南某长石矿矿物组成复杂,主要有用矿物为长石和石英。为开发利用该矿石,对其进行了选矿试验研究。结果表明:在磨矿细度为-0.074 mm占62.36%时,原矿经脱泥-脱石英浮选后,以硫酸为调整剂、N-烷基丙撑二胺+石油磺酸钠为捕收剂经1粗2扫长石-石英分离浮选,获得了Al2O3含量为18.68%的长石浮选精矿和SiO2含量为98.35%的石英浮选精矿;长石浮选精矿经1粗1精磁选除铁获得了Al2O3含量为18.68%、Fe2O3为0.18%、Na2O+K2O为12.28%的长石精矿,达到了陶瓷工业的一级质量标准;石英浮选精矿在0.35 T条件下磁选除铁后获得了SiO2含量为98.35%、Fe2O3为0.076%的石英精矿,满足玻璃工业二级质量要求。  相似文献   

4.
西澳某伴生钽铌锂辉石矿为伟晶岩型锂矿,矿石Li2O品位1.53%、Ta2O5品位0.025%、Nb2O5品位0.006%;脉石矿物主要为长石、辉石和石英。为高效开发利用该矿石资源,进行了系统的浮选试验研究以及磁选、重选试验研究。确定采用弱磁选除铁—强磁选、重选联合回收钽铌—强磁选尾矿浮选回收锂辉石的选矿工艺。试验结果表明:原矿在磨矿细度-0.076 mm占75%条件下,弱磁选除铁—强磁选回收钽铌工艺分选指标优于螺旋溜槽重选工艺分选指标,强磁选精矿经摇床1次粗选、1次精选获得Ta2O5品位21.35%、对原矿回收率23.03%的钽铌精矿;以碳酸钠、氢氧化钠、氯化钙为浮选锂辉石调整剂,以改性脂肪酸类捕收剂T-88为浮选锂辉石捕收剂,对强磁选尾矿进行锂辉石浮选试验,经1次粗选、2次精选、1次扫选、1次中矿再选锂,获得Li2O品位5.60%、对原矿回收率76.13%的锂辉石精矿,实现了矿石中锂辉石与钽铌矿物的有效回收。试...  相似文献   

5.
鞠志强  李艳军 《金属矿山》2019,48(2):135-140
采用X-射线分选机对大井子铜锌矿石进行不同粒级的X射线预选试验,结果表明:当阈值选取0.09时,30~200 mm粒级采用预选工艺后可获得铜、锌品位分别为0.90%和0.73%,铜、锌回收率分别为99.46%和98.80%的预选精矿,抛尾率为18.09%。30~200 mm粒级与筛分后-30 mm合并为精矿,较原矿铜、锌品位分别提高了0.16和0.13个百分点。对预选尾矿分析表明:预选尾矿铜品位为0.028%,锌品位为0.036%,铜、锌品位非常低;SiO2含量为63.13%,Al2O3含量为14.48%,TFe含量为7.32%,少量的CaO、MgO和K,说明尾矿主要成分为脉石矿物。对预选后精矿进行SEM和EDS检测表明:预选精矿主要以石英、绿泥石等脉石矿物为主,矿物组成粒度极不均,矿物之间的嵌布关系较复杂。对大井子铜锌矿石进行X-射线分选机预选后,可以提高入选矿石的品位,减少入选的废石量,提高选厂的综合效益。  相似文献   

6.
通过对矿石工艺矿物学的研究,结合现有的选矿技术,在矿山原有的钽铌锡钨矿物重选回收的基础上,增加了从重选尾矿中回收云母→长石→石英的工艺。连选试验表明,钽铌锡钨重选尾矿再梯级回收的铷云母精矿、长石精矿与石英精矿质量达到工业利用标准,三种非金属精矿的回收率分别达到了3.13%、44.49%、35.56%,矿石的非金属矿物的资源综合回收率达到83.18%。  相似文献   

7.
针对内蒙古赵井沟钽铌矿,通过光学显微镜、人工重砂、X射线衍射分析以及电子探针分析,确定了该矿主要矿物组成及含量,详细研究了钽铌类矿物的化学成分、粒度和嵌布特征,以及钽、铌等元素的赋存状态。钽铌锰矿类矿物的粒度微细,一般在0.02~0.074 mm之间,以包裹体形式分布为主,占66.83%,粒间分布占33.17%。有用矿物为钽铌锰矿、铌钽锰矿2个矿物亚种,钽铌锰矿类矿物以富铁和富锰类为主,有一定量的钛等元素混入。根据金属量平衡结果,该矿钽、铌主要集中在钽铌锰矿类矿物中,主要分散分布在云母、长石、石英等脉石矿物中,Nb2O5的集中系数为61.23%,Ta2O5的集中系数为57.17%。在该研究的基础上,选矿工艺制定了合理的流程,取得了良好的选矿指标。   相似文献   

8.
广东省某矿区铌钽矿床为中型花岗伟晶岩型铌钽矿床,矿脉受断裂和褶皱控制明显。矿石主要由白云母、石英、长石等组成,含量占98%以上,矿石矿物主要为铌钽铁矿,含量较少,主要与白云母、长石、石英连生。该矿床中矿石除可选冶铌钽外还可综合利用矿石尾砂矿中的白云母、长石以及铷等有用物质。  相似文献   

9.
钽铌锂是重要的稀有金属,具有极高的开发利用价值。针对江西宜春地区低品位锂云母矿,开展了钽铌、锂及长石综合回收工艺试验研究。结果表明,针对低品位锂云母矿资源特性,开发了以-CO-NH-为主要作用官能团的高选择性锂云母捕收剂ZL-01,实现了在易于泥化的复杂矿浆体系中锂云母矿物的高效捕收,解决了传统脱泥-浮选工艺造成锂云母矿物流失的难题。以ZL-01作捕收剂不脱泥直接浮选锂云母矿物,浮选尾矿采用螺旋溜槽粗选-摇床精选的重选工艺回收钽铌矿物,重选尾矿采用弱磁-强磁联合的磁选工艺对长石矿物进行除杂提纯。在原矿含0.42%Li2O、0.004%Ta2O5、0.008%Nb2O5的情况下,获得了Li2O品位3.38%、回收率为73.50%的锂云母精矿,Ta2O5品位18.530%、Nb2O5品位24.120%,钽回收率48.89%、铌回收率36.98%的钽铌精矿,TFe含量(质量分...  相似文献   

10.
针对江西某钨锡重选尾矿中石英、长石、云母含量高的特点,试验采用磨矿—磁选除铁—脱泥—云母浮选—石英与长石浮选分离的无氟少酸工艺综合回收石英和长石。在试样磨矿细度?0.074 mm含量占73.20%、磁场强度为1.0 T条件下进行磁选除铁,非磁性产品采用静置—虹吸方法脱去?0.020 mm细泥。磨矿—磁选—脱泥等预处理后的样品采用碳酸钠调整矿浆pH=10.5、捕收剂YF-1用量240 g/t 和十二胺用量80 g/t 联合浮选云母。对云母浮选尾矿以Ba2+用量120 g/t活化石英、YF-2用量250 g/t 抑制长石、捕收剂YF-1用量250 g/t 进行石英与长石的浮选分离。石英浮选尾矿即为长石精矿 ,石英精矿通过酸法反浮选长石工艺得到石英精矿和长石副产品。试验获得石英精矿产率25.30%,SiO2含量99.20%,石英矿物回收率50%;长石精矿产率22.69%,K2O+Na2O含量13.16%,长石副产品产率7.68%,K2O+Na2O含量9.23%,长石矿物总回收率约79%;云母精矿产率14.50%,K2O含量7.65%,Na2O含量1.65%,Al2O3 含量16.40%,云母矿物回收率85%。   相似文献   

11.
某花岗伟晶岩铌钽铍矿原矿矿物组成较为复杂,金属矿物含量很低,主要为钽铌铁矿、电石气、绿柱石、锡石等,非金属矿物主要为斜长石、石英、白云母、钾长石等。对其进行了综合利用实验研究,原矿通过“强磁选+摇床”工艺流程最终可以得到铌和钽品位分别为41.21%和12.44%、回收率分别为33.81%和31.80%的铌钽精矿;B2O3品位和回收率分别为9.10%和75.85%的电气石精矿;Sn品位和回收率分别为68.85%和72.57%的锡石精矿;有一部分大片云母矿物含量为91.26%的云母精矿。摇床中精矿再经过浮选工艺流程可以得到BeO品位和回收率分别为4.6%和83.20%的绿柱石精矿;云母矿物含量为93.55%的云母精矿;Na2O品位和回收率分别为9.36%和81.85%的长石精矿;SiO2品位和回收率分别为89.22%和49.87%的石英精矿。通过合适的联合工艺流程,实现了对该矿产资源中铌钽矿、绿柱石、电气石、锡石、云母、长石和石英的综合回收。  相似文献   

12.
针对内蒙古某钽铌稀有多金属矿,采用光薄片鉴定、X-衍射分析、扫描电镜及能谱分析、电子探针分析等方法对其进行了详尽的工艺矿物学研究,查明了金属矿物主要为钽铌铁矿、锡石、细晶石等,非金属矿物主要为钠长石、石英和天河石。通过详细试验研究,确定采用“一段磨矿—强磁分选—分级摇床—摇精回收钽铌—酸洗除铁—摇尾回收锂铷云母—强磁尾矿综合回收长石云母”的选冶联合工艺,最终可获得(Ta, Nb)2O5品位为60.15%、回收率为21.70%的钽铌精矿1,(Ta, Nb)2O5品位为30.35%、回收率为3.17%的钽铌精矿2,Li2O品位0.89%、回收率为58.98%的锂铷云母精矿1(Rb2O品位0.34%、回收率为11.70%,云母含量为92%),Li2O品位0.60%、回收率为5.59%的锂铷云母精矿2(Rb2O品位0.28%、回收率为1.35%,云母含量为93%),Na2O品位6.88%、回收率为7...  相似文献   

13.
湖南仁里矿床平均Ta2O5品位0.036%,Nb2O5品位0.047%,为中国东部高品位、超大型稀有金属矿床,主要有用矿物有钽铌矿物、绿柱石、云母和长石;伴生矿物有锂云母、电气石和石榴石等。钽铌矿物主要以块状、颗粒状、针状及少量的片状赋存于中—粗粒白云母伟晶岩中的钠长石和石英中,少部分赋存于白云母、绿柱石、磷灰石和电气石中,嵌布粒度较粗;绿柱石主要以块状及颗粒状赋存于伟晶岩中。本文采用螺旋溜槽粗选—摇床精选回收钽铌矿物—重选尾矿浮选回收云母—云母浮选尾矿浮选铍的工艺流程,获得了钽精矿(Ta2O5品位20.36%,Nb2O5品位19.87%,Ta2O5回收率73.53%)、铍精矿(BeO品位8.69%,回收率65.92%)和云母精矿(Al2O3品位24.26%, Li2O品位0.25%,Rb2  相似文献   

14.
这是一篇矿物加工工程领域的论文。新疆某锂辉石矿Li2O品位为1.04%,含锂矿物主要为锂辉石、含锂白云母及磷锂铝石,脉石矿物主要有石英、钠长石和钾长石。该矿石在磨矿细度-0.074 mm 79.4%的条件下,采用自主开发的捕收剂EM-PN51,经一粗一扫三精的浮选闭路流程,最终获得Li2O品位5.36%、Nb2O5含量0.071%、Ta2O5含量0.044%的含铌钽锂精矿,Li2O回收率为87.38%,Nb2O5回收率为87.33%、Ta2O5回收率为88.26%,实现了该锂辉石矿中多种有价组分的综合回收。  相似文献   

15.
伴生资源综合利用是绿色矿山建设、节约能源的重要举措。某地花岗岩型独立铷矿中伴生钽、铌、锂金属,为实现该铷矿的资源化利用,对钽、铌、锂进行了详细的综合回收试验研究。矿石中Ta2O5、Nb2O5、Li2O品位分别为42.15g/t、184.00g/t和0.086%;钽铌赋存于铌铁矿中,锂主要赋存于铁锂云母中。确定采用磁选优先回收铌铁矿和铁锂云母—磁精矿重选回收钽铌—重选尾矿浮选回收锂的选矿工艺。试验结果表明:在磨矿细度为-0.074mm占61.81%的条件下,经弱磁选除铁—强磁选—两段摇床重选得到含11 650 g/t Ta2O5、50 400g/t Nb2O5的钽铌精矿,钽、铌回收率分别为38.46%和38.11%,钽、铌富集比均超过270;以碳酸钠、水玻璃作为调整剂,氧化石蜡皂和十二胺作为阴阳离子组合捕收剂,对重选尾矿进行浮选富集铁锂云母,经1次粗选、1次精选、1次扫选获得Li2<...  相似文献   

16.
某锂多金属矿含有锂辉石、钽铌锰矿、云母和长石等资源,采用常规重磁浮流程长、工艺复杂、回收率低。本研究采用高效选择性耐低温捕收剂ML和高效捕收剂MT,开发了一种锂钽铌短流程同步浮选与分离工艺,并回收尾矿中的石英长石。在原矿品位Li2O 1.72%、Ta2O5 0.025%的条件下,获得锂精矿Li2O品位6.55%,回收率71.04%;高品位钽精矿Ta2O5品位18.03%,回收率33.40%;低品位钽精矿Ta2O5品位3.21%,回收率9.00%;以及含Li2O 2.07%的云母精矿和高白度石英长石产品。实现了该锂多金属矿的综合回收。  相似文献   

17.
某复杂稀有金属伴生矿选矿试验研究   总被引:1,自引:0,他引:1  
内蒙古某稀有金属伴生矿REO含量0.28%,Nb2O5含量0.24%,铁品位5.72%,稀土和铌矿物嵌布粒度微细,稀土矿物主要有氟碳铈矿和独居石,铌矿物主要为钽铌锰矿和钇复稀金矿,铁钛矿物为钛磁赤铁矿、锰钛铁矿,脉石矿物主要有石英和长石。分别研究了重选、磁选及磁选—重选联合流程对原矿稀土、铌、铁的预富集效果。结果表明,重选对原矿中铁、稀土和铌的预富集效果不理想,高梯度磁选和磁选—重选联合工艺可获得较好的预富集效果。在磨矿细度-74μm含量占82.5%,磁场强度1.0 T的条件下,高梯度磁选试验可获得TFe 32.59%、REO含量1.57%、Nb2O5含量1.34%的粗精矿,三者回收率分别为85.57%、85.20%和86.94%,粗精矿可采用冶金工艺分离提取稀土、铌、铁。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号