共查询到20条相似文献,搜索用时 0 毫秒
1.
为制备具有功能性的聚乳酸复合材料,以聚L-乳酸(PLLA)和α-环糊精(α-CD)为原料,通过熔融共混技术制备PLLA/α-CD复合材料。研究结果显示α-CD促进了PLLA的结晶,提高了PLLA的结晶速率,但材料变脆;而PLLA/α-CD复合材料非等温结晶后的熔融行为则地受到降温速率的强烈影响,降温速率的增加使得PLLA/α-CD复合材料由单熔融峰转变为双熔融峰。热分解性能研究结果则表明添加α-CD能使PLLA的热分解温度升高。 相似文献
2.
聚己内酯改性聚乳酸/淀粉共混材料的性能研究 总被引:1,自引:0,他引:1
将热塑性淀粉(TPS)与聚己内酯(PCI)、聚乳酸(PLA)共混后,采用溶剂挥发法制备出完全生物降解的聚己内酯改性聚乳酸/淀粉共混材料.测试了材料的力学性能、共混形态、疏水性能和降解性能等.结果表明:甘油和水能够很好增塑淀粉,当淀粉:甘油:水为4:1.2:10时,拉伸强度最高达44.84MPa,断裂伸长率达93%,共混材料具有较好的力学性能;FT-IR和SEM显示聚己内酯的加入提高了共混材料的相客性;随着淀粉含量的增加,吸水率增大;土埋70天后,共混材料最高降解率达42.41%. 相似文献
3.
以癸二酸为原料,经酰化反应得到癸二酰氯,再与苯甲酰肼反应合成得到聚L-乳酸新型成核剂———癸二酸二苯甲酰肼。考察了该成核剂对聚L-乳酸结晶行为和力学性能的影响。结果表明,1%癸二酸二苯甲酰肼在115℃使聚L-乳酸的半结晶时间t1/2从26.5 min缩短到2.7 min;在1℃/min降温速率下结晶温度从105.88℃... 相似文献
4.
聚L-乳酸/二氧化硅纳米复合材料的降解性能研究 总被引:1,自引:0,他引:1
为了研究乳酸齐聚物接枝改性SiO2(g-SiO2)对聚乳酸降解行为的影响,采用熔融共混法制备得到了聚乳酸/g-SiO2纳米复合材料。重点研究了PLLA/g-SiO2纳米复合材料和PLLA在PBS缓冲溶液中的降解行为,通过其表观形貌观察、吸水率、失重率研究发现g-SiO2能够加速PLLA的降解,并且随着g-SiO2含量的增加,其降解速率明显加快。降解过程的DSC测试显示PLLA/g-SiO2纳米复合材料的Tg随着降解时间的延长而逐渐减小。 相似文献
5.
6.
通过熔融共混制备出一系列不同组成比的聚左旋乳酸(PLLA)/聚丁二酸丁二醇酯(PBS)/醋酸锌(Zn(OAc)2)样品,通过扫描电子显微镜、动态力学性能分析仪、差示扫描量热仪及力学性能测试等,研究了不同PBS及Zn(OAc)2含量对PLLA/PBS共混物的形态结构、结晶性能和力学性能的影响。结果表明,PLLA和PBS属于非相容体系,Zn(OAc)2的加入能降低PBS相区的尺寸,提高PLLA/PBS体系的相容性,且质量分数为0.05%时增容效果最佳;PBS的加入可有效提高PLLA的结晶速率和结晶度;随着PBS含量的增加,共混物的断裂伸长率和冲击韧性与纯PLLA相比显著提高,共混物的断裂伸长率均在300%以上;当PLLA/PBS/Zn(OAc)2质量比为80/20/0.05时,共混物的综合性能最优。 相似文献
7.
研究了中等分子量(-Mη=1.10×105)的聚D,L-乳酸在体外不同环境中的可降解性能,包括不同pH值溶液(37℃)和自然土壤。降解性能采用失重率、分子量变化、溶液pH值变化等来进行评价,并对试样表面形貌采用扫描电镜(SEM)进行了观察。结果表明:聚D,L-乳酸在体外环境中具有良好的可降解性,受降解环境的影响较大;失重和分子量的减小并不平行;在不同pH值溶液和土壤中的分子量变化在一定时间内符合一级反应动力学,且随溶液pH值的增大,降解速率减小。 相似文献
8.
合成了聚衣康酸丁二醇酯共聚物(PBI),并与聚乳酸(PLLA)共混制备了PLLA/PBI共混薄膜。通过广角X射线衍射仪和差示扫描量热仪测试了薄膜的结晶性能。研究表明,PBI的加入促进了PLLA晶型的转变,且PLLA的结晶速率加快。采用拉力试验机对薄膜的力学性能进行测试,结果表明,相比于PLLA薄膜,PLLA/PBI薄膜的柔顺性大幅度提高。当PBI的质量分数为15%时,PLLA/PBI薄膜的断裂伸长率达到371.8%。当薄膜的结晶度达到33.9%时,薄膜仍具有良好的柔韧性。PLLA/PBI经等温结晶后,其强度增加,薄膜具备较好的柔顺性。PBI质量分数为20%时,PLLA的断裂伸长率仍可达到50%以上。 相似文献
9.
利用差示扫描量热仪(DSC)研究了癸二酰二苯甲酰肼(BSAD)成核剂对聚L-乳酸(PLLA)/玻璃纤维(GF)复合材料等温及非等温结晶性能的影响。结合偏光显微镜(POM)观察发现,BSAD可在熔融加工中与PLLA基体形成均相,在冷却过程中,该体系发生相分离,BSAD晶体优先从PLLA熔体中析出,诱导PLLA结晶。等温结晶动力学研究发现,随着BSAD含量提高,PLLA的Avrami指数逐渐减小,表明异相成核增强。在110℃形成的成核剂晶体尺寸较小,可在提高PLLA结晶速率的同时细化晶体尺寸,并改善PLLA/GF复合材料的拉伸、弯曲及冲击性能。 相似文献
10.
聚L-乳酸/聚丁二烯基聚氨酯的合成与表征 总被引:1,自引:0,他引:1
以乙二醇和L-乳酸熔融直接缩聚制备双端羟基聚L-乳酸预聚物(PLLA),并用1H、13C-NMR、DSC、XRD对PLLA结构和性能分析表征.以液化二苯基甲烷二异氰酸酯(MDI)为偶联剂,端羟基聚L-乳酸和端羟基聚丁二烯(HTPB)偶联反应制备橡胶改性聚乳酸基聚氨酯弹性体,并用FT-IR,1H、13C-NMR对聚合产物进行结构表征确认.DSC测试结果表明聚氨酯有聚丁二烯段和聚乳酸段两个玻璃化转变温度,熔融温度基本在130℃.随着聚丁二烯含量的增加,结晶衍射峰逐渐消失,聚氨酯的拉伸强度降低,断裂伸长率增加.断面扫描电镜结果显示聚氨酯呈微相分离结构和弹性断裂. 相似文献
11.
12.
以L-乳酸为原料,熔融缩聚法直接合成聚L-乳酸.考察了预聚工艺、催化剂配比及用量、反应温度、反应时间及真空度等条件对乳酸聚合反应的影响.通过红外光谱(FTIR)和核磁共振波谱(1H-NMR)分析和表征聚乳酸的结构,凝胶渗透色谱(GPC)测试其分子量及分子量分布.研究表明,较为适宜的工艺条件为:以二水合氯化亚锡(SnCl2·2H2O)和对甲基苯磺酸(TSA)为催化剂,且SrCl2·2H2O相对于乳酸预聚体的质量比为0.5%,真空度-0.98MPa,温度180℃,反应时间10h.得到的聚L-乳酸的粘均分子量为6.17×104,分子量分布1.37,且产率较高,色泽较浅. 相似文献
13.
氯化镁/甘油改性羧甲基淀粉/聚乙烯醇共混材料的结构与性能 总被引:1,自引:0,他引:1
为获得改性淀粉/聚乙烯醇(PVA)共混材料的结构与性能特征,以氯化镁/甘油为复配改性剂,采用溶液成膜方法制备了羧甲基淀粉(CMS)/PVA,研究了CMS/PVA复合膜的红外吸收特性、结晶性能、微观形貌、热性能、力学性能及生物降解性。研究结果表明,氯化镁和甘油可与CMS/PVA产生电子相互作用和氢键作用,阻碍CMS/PVA分子链的规整排列,提高羧甲基淀粉与PVA的相容性,降低CMS/PVA的结晶度和热稳定性。氯化镁/甘油复配改性剂对CMS/PVA的力学性能影响显著,可使CMS/PVA断裂伸长率和拉伸强度提高。氯化镁/甘油可促进CMS/PVA的降解,增加氯化镁/甘油复配改性剂中氯化镁的含量可提高复合膜的降解率。 相似文献
14.
高俊邹琴吴鹏伟张熙 《高分子材料科学与工程》2018,(7):48-53
为了改善淀粉/聚丁二酸丁二醇酯(PBS)共混材料的相容性和力学性能,文中以氯化镁/甘油为复配改性剂,采用熔融共混方法制备了改性淀粉/聚丁二酸丁二醇酯共混材料,研究了改性共混材料的红外吸收特性、形态结构、热性能、力学性能及结晶性能。研究结果表明,氯化镁和甘油可与淀粉/PBS共混材料产生强相互作用,破坏淀粉/PBS共混材料原有的氢键与结晶结构,提高淀粉与PBS的相容性,使共混材料的玻璃化转变温度、结晶温度、冷结晶温度及结晶度降低;采用氯化镁/甘油复配改性剂可制备出具有良好性能的淀粉/PBS共混材料,改性后的淀粉/PBS共混材料的断裂伸长率和拉伸强度均得到提高。 相似文献
15.
16.
可降解聚乳酸/淀粉共混复合材料的研究进展 总被引:3,自引:0,他引:3
将聚乳酸与淀粉共混是一种简单易行的好方法,可以得到完全降解的复合材料.综述了聚乳酸/淀粉共混体系的研究进展,分析了淀粉种类、相成分接枝改性、增容剂等因素对共混体系的机械性能、热性能和微观形态的影响,展望了聚乳酸/淀粉共混复合材料今后的发展方向. 相似文献
17.
聚D,L-乳酸中间体--D,L-丙交酯的合成 总被引:4,自引:0,他引:4
聚D,L-乳酸(PDLLA)的合成方法主要有直接法和间接法两种。间接法合成PDLLA的关键在于中间体D,L-丙交酯(DLLA)的制备。文中以D,L-乳酸为原料,在催化剂辛酸亚锡(ZnOct2)的作用下,合成DLLA。研究温度、压力、时间等因素对DLLA产率的影响,利用DSC、XRD、IR等分析测试技术对DLLA的性能和结构进行相关的测试和表征。研究结果表明,在反应体系中加入乙二醇作为稀释剂,能降低DLLA的馏出温度,避免了DLLA在蒸馏过程中产生炭化现象,并使DLLA的平均产率由36.8%提高至51.3%。 相似文献
18.
19.
20.
壳聚糖-淀粉-聚乙烯醇共混改善壳聚糖膜性能的研究 总被引:1,自引:1,他引:1
以溶液共混的方法,制备了壳聚糖-淀粉-聚乙烯醇共混膜,并对薄膜的抗拉强度、断裂伸长率和气体阻隔性进行了测试.实验表明:壳聚糖含量为40%(质量分数,后同),聚乙烯醇和淀粉质量比例2:1,甘油含量15%时,共混体系具有较好的相容性、较理想的机械性能和气体阻隔性,共混膜的抗拉强度和断裂伸长率分别达到62MPa和118%,透氧系数仅为12.1×10-15 cm3·cm/cm2·s·Pa. 相似文献