首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Database searches indicated that the genome of Bacillus subtilis contains three different genes encoding RNase H homologues. The ypdQ gene encodes an RNase HI homologue with 132 amino acid residues, whereas the rnh and ysgB genes encode RNase HII homologues with 255 and 313 amino acid residues, respectively. RNases HI and HII show no significant sequence similarity. These genes were individually expressed in Escherichia coli; the recombinant proteins were purified, and their enzymatic properties were compared with those of E. coli RNases HI and HII. We found that the ypdQ gene product showed no RNase H activity. The 2.2 kb pair genomic DNA containing this gene did not suppress the RNase H deficiency of an E. coli rnhA mutant, indicating that this gene product shows no RNase H activity in vivo as well. In contrast, the rnh (rnhB) gene product (RNase HII) showed a preference for Mn2+, as did E. coli RNase HII, whereas the ysgB (rnhC) gene product (RNase HIII) exhibited a Mg2+-dependent RNase H activity. Oligomeric substrates digested with these enzymes indicate similar recognition of these substrates by B. subtilis and E. coli RNases HII. Likewise, B. subtilis RNase HIII and E. coli RNase HI have generated similar products. These results suggest that B. subtilis RNases HII and HIII may be functionally similar to E. coli RNases HII and HI, respectively. We propose that Mn2+-dependent RNase HII is universally present in various organisms and Mg2+-dependent RNase HIII, which may have evolved from RNase HII, functions as a substitute for RNase HI.  相似文献   

2.
We have cloned the gene encoding RNase HII (RNase HIIPk) from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 by screening of a library for clones that suppressed the temperature-sensitive growth phenotype of an rnh mutant strain of Escherichia coli. This gene was expressed in an rnh mutant strain of E. coli, the recombinant enzyme was purified, and its biochemical properties were compared with those of E. coli RNases HI and HII. RNase HIIPk is composed of 228 amino acid residues (molecular weight, 25,799) and acts as a monomer. Its amino acid sequence showed little similarity to those of enzymes that are members of the RNase HI family of proteins but showed 40, 31, and 25% identities to those of Methanococcus jannaschii, Saccharomyces cerevisiae, and E. coli RNase HII proteins, respectively. The enzymatic activity was determined at 30 degreesC and pH 8.0 by use of an M13 DNA-RNA hybrid as a substrate. Under these conditions, the most preferred metal ions were Co2+ for RNase HIIPk, Mn2+ for E. coli RNase HII, and Mg2+ for E. coli RNase HI. The specific activity of RNase HIIPk determined in the presence of the most preferred metal ion was 6. 8-fold higher than that of E. coli RNase HII and 4.5-fold lower than that of E. coli RNase HI. Like E. coli RNase HI, RNase HIIPk and E. coli RNase HII cleave the RNA strand of an RNA-DNA hybrid endonucleolytically at the P-O3' bond. In addition, these enzymes cleave oligomeric substrates in a similar manner. These results suggest that RNase HIIPk and E. coli RNases HI and HII are structurally and functionally related to one another.  相似文献   

3.
Recently we showed that the major mammalian RNase H, RNase HI, is evolutionarily related to prokaryotic RNase HII (Frank et al., FEBS-Lett. 421, 23-26, 1998), an enzyme described to be a minor activity in E. coli. As a consequence we addressed the question of whether a human RNase H exists, sharing homology with the main E. coli enzyme, RNase HI. Employing sequence analysis of expressed sequence tags, followed by specific PCR amplification of human cDNA, we cloned, sequenced and expressed a human open reading frame, coding for a 32 kDa protein. Purification of the recombinant His(6)-tagged protein from E. coli extracts using Ni(2+)-chelating chromatography and subsequent renaturation gel assay proved that it is an active RNase H. The properties of this enzyme suggest that it is identical with the human RNase HII, previously purified by one of us (Frank et al., Nucleic Acids Res. 22, 5247-5254, 1994). Studies using a green fluorescent protein-fusion construct reveal that this protein is located in the nucleus.  相似文献   

4.
Ribonuclease H activities present in fully grown Xenopus oocytes were investigated by using either liquid assays or renaturation gel assays. Whereas the test in solution detected an apparently unique class I ribonuclease H activity, the activity gels did not detect this enzyme but another one with the molecular weight expected for a class II ribonuclease H. The ribonuclease HI was found to be primarily concentrated in the germinal vesicle, but around 5% of this activity was detectged in the cytoplasm and may correspond to the activity involved in antisense oligonucleotide-mediated destruction of messenger RNAs. The concentration of this class I ribonuclease H in oocytes is similar to that in somatic cells. The class II ribonuclease H remained undetectable by the test in solution because its activity was cryptic. On activity gel, a polypeptide with the apparent molecular mass of 32 kDa, expected for a ribonuclease HII, was found to be concentrated in mitochondria although no RNase H activity could be detected by using the liquid assay. Based on sedimentation studies, we hypothesize that the apparent absence of RNase H activity in solution could be the result of the association of this 32-kDa polypeptide with other polypeptides, or possibly nucleic acids, to form a multimer of, until now, unknown function.  相似文献   

5.
Eukaryotic RNases H from Saccharomyces cerevisiae , Schizosaccharomyces pombe and Crithidia fasciculata , unlike the related Escherichia coli RNase HI, contain a non-RNase H domain with a common motif. Previously we showed that S.cerevisiae RNase H1 binds to duplex RNAs (either RNA-DNA hybrids or double-stranded RNA) through a region related to the double-stranded RNA binding motif. A very similar amino acid sequence is present in caulimovirus ORF VI proteins. The hallmark of the RNase H/caulimovirus nucleic acid binding motif is a stretch of 40 amino acids with 11 highly conserved residues, seven of which are aromatic. Point mutations, insertions and deletions indicated that integrity of the motif is important for binding. However, additional amino acids are required because a minimal peptide containing the motif was disordered in solution and failed to bind to duplex RNAs, whereas a longer protein bound well. Schizosaccharomyces pombe RNase H1 also bound to duplex RNAs, as did proteins in which the S.cerevisiae RNase H1 binding motif was replaced by either the C.fasciculata or by the cauliflower mosaic virus ORF VI sequence. The similarity between the RNase H and the caulimovirus domain suggest a common interaction with duplex RNAs of these two different groups of proteins.  相似文献   

6.
7.
8.
Expression of S cerevisiae RNase H1 in E coli leads to the formation of a proteolytic product with a molecular mass of 30 kDa that is derived from the 39-kDa full length protein. The 30-kDa form retains RNase H1 activity, as determined by renaturation gel assay. The amount of proteolysis observed depends on the procedure used in preparing the cell extracts for protein analysis. The cleavage site on the amino acid sequence of the 39-kDa RNase H1 was determined by N-terminal sequence analysis of the 30-kDa proteolytic form. The cut occurs between two arginines located at the amino terminus region of the protein. The pattern of proteolysis was examined for both the wild-type RNase H1 and a mutant RNase H1 that was constructed in this work. In the mutant the second arginine of the cleavage site was changed to a lysine. Comparisons of the expression of the wild-type and altered protein in two different E coli strains demonstrate that the protease responsible for the degradation has a specificity very similar to that of the OmpT protease. However, the proteolysis observed in an OmpT background in extracts, prepared by boiling the cells in SDS containing buffer, indicates that the protease may, unlike OH108.  相似文献   

9.
10.
11.
Escherichia coli ribonucleases (RNases) HII, III, II, PH and D have been used to characterise new and known viral, bacterial, archaeal and eucaryotic sequences similar to these endo- (HII and III) and exoribonucleases (II, PH and D). Statistical models, hidden Markov models (HMMs), were created for the RNase HII, III, II and PH and D families as well as a double-stranded RNA binding domain present in RNase III. Results suggest that the RNase D family, which includes Werner syndrome protein and the 100 kDa antigenic component of the human polymyositis scleroderma (PMSCL) autoantigen, is a 3'-->5' exoribonuclease structurally and functionally related to the 3'-->5' exodeoxyribonuclease domain of DNA polymerases. Polynucleotide phosphorylases and the RNase PH family, which includes the 75 kDa PMSCL autoantigen, possess a common domain suggesting similar structures and mechanisms of action for these 3'-->5' phosphorolytic enzymes. Examination of HMM-generated multiple sequences alignments for each family suggest amino acids that may be important for their structure, substrate binding and/or catalysis.  相似文献   

12.
Onconase and bovine seminal RNase, two members of the RNase A superfamily, inhibit human immunodeficiency virus type 1 replication in H9 leukemia cells 90-99.9% over a 4-day incubation at concentrations not toxic to uninfected H9 cells. Two other members of the same protein family, bovine pancreatic RNase A and human eosinophil-derived neurotoxin, have no detectable antiviral activity, demonstrating a strikingly selective antiviral activity among homologous ribonucleases. The antiviral RNases do not appear to affect viral particles directly but inhibit replication in host cell cultures. Onconase, already in clinical trials for cancer therapy, and bovine seminal RNase have potential as antiviral therapeutics.  相似文献   

13.
14.
We have identified a double strand RNase (dsRNase) activity that can serve as a novel mechanism for chimeric antisense oligonucleotides comprised of 2'-methoxy 5' and 3' "wings" on either side of an oligoribonucleotide gap. Antisense molecules targeted to the point mutation in codon 12 of Harvey Ras (Ha-Ras) mRNA resulted in a dose-dependent reduction in Ha-Ras RNA. Reduction in Ha-Ras RNA was dependent on the oligoribonucleotide gap size with the minimum gap size being four nucleotides. An antisense oligonucleotide of the same composition, but containing four mismatches, was inactive. When chimeric antisense oligonucleotides were prehybridized with 17-mer oligoribonucleotides, extracts prepared from T24 cells, cytosol, and nuclei resulted in cleavage in the oligoribonucleotide gap. Both strands were cleaved. Neither mammalian nor Escherichia coli RNase HI cleaved the duplex, nor did single strand nucleases. The dsRNase activity resulted in cleavage products with 5'-phosphate and 3'-hydroxyl termini. Partial purification of dsRNase from rat liver cytosolic and nuclear fractions was effected. The cytosolic enzyme was purified approximately 165-fold. It has an approximate molecular weight of 50,000-65,000, a pH optimum of approximately 7.0, requires divalent cations, and is inactivated by approximately 300 mM NaCl. It is inactivated by heat, proteinase K, and also by a number of detergents and several organic solvents.  相似文献   

15.
16.
17.
The polypeptide and structural gene for a high-molecular-mass c-type cytochrome, cytochrome c553O, was isolated from the methanotroph Methylococcus capsulatus Bath. Cytochrome c553O is a homodimer with a subunit molecular mass of 124,350 Da and an isoelectric point of 6. 0. The heme c concentration was estimated to be 8.2 +/- 0.4 mol of heme c per subunit. The electron paramagnetic resonance spectrum showed the presence of multiple low spin, S = 1/2, hemes. A degenerate oligonucleotide probe synthesized based on the N-terminal amino acid sequence of cytochrome c553O was used to identify a DNA fragment from M. capsulatus Bath that contains occ, the gene encoding cytochrome c553O. occ is part of a gene cluster which contains three other open reading frames (ORFs). ORF1 encodes a putative periplasmic c-type cytochrome with a molecular mass of 118, 620 Da that shows approximately 40% amino acid sequence identity with occ and contains nine c-heme-binding motifs. ORF3 encodes a putative periplasmic c-type cytochrome with a molecular mass of 94, 000 Da and contains seven c-heme-binding motifs but shows no sequence homology to occ or ORF1. ORF4 encodes a putative 11,100-Da protein. The four ORFs have no apparent similarity to any proteins in the GenBank database. The subunit molecular masses, arrangement and number of hemes, and amino acid sequences demonstrate that cytochrome c553O and the gene products of ORF1 and ORF3 constitute a new class of c-type cytochrome.  相似文献   

18.
19.
Human extracellular ribonucleases (RNase), together with other members of the mammalian RNase A superfamily, can be classified into four different RNase families on the basis of their structural, catalytic and/or biological properties. Their occurrence and main distinctive features have been described, and the information available on their catalytic properties has been analysed and discussed in comparison with those of other animal RNases. On the basis of some results obtained with various single- and double-stranded polyribonucleotides, it has been proposed that while pancreatic-type (pt) RNases could be defined as single-strand/pyrimidine 'preferring' ribonucleases, mammalian nonpancreatic-type (npt) RNases may be referred to as single-strand/pyrimidine 'specific' ribonucleases. In addition, some data concerning human nptRNases may support the suggestion [Cuchillo et al. (1993) FEBS Lett. 333: 207-210] that the enzyme 'ribonuclease' should be reclassified as 'transferase'.  相似文献   

20.
Cysteinyl-tRNA synthetase (CRS) from Saccharomyces cerevisiae was purified 2300-fold with a yield of 33%, to a high specific activity (kcat4.3 s-1 at 25 degrees C for the aminoacylation of yeast tRNACys). SDS-PAGE revealed a single polypeptide corresponding to a molecular mass of 86 kDa. Polyclonal antibodies to the purified protein inactivated CRS activity and detected only one polypeptide of 86 kDa in a yeast extract subjected to SDS-PAGE followed by immunoblotting. In contrast to bacterial CRS which is a monomer of about 50 kDa, the native yeast enzyme behaved as a dimer, as assessed by gel filtration and cross-linking. Its subunit molecular mass is in good agreement with the value of 87.5 kDa calculated for the protein encoded by the yeast genomic sequence YNL247w. The latter was previously tentatively assigned to CRS, based on limited sequence similarities to the corresponding enzyme from other sources. Determination of the amino acid sequence of internal polypeptides derived from the purified yeast enzyme confirmed this assignment. Alignment of the primary sequences of prokaryotic and yeast CRS reveals that the larger size of the latter is accounted for mostly by several insertions within the sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号