共查询到17条相似文献,搜索用时 116 毫秒
1.
本文对AdaBoost算法进行了介绍,并从整个数学推导过程中分析怎样挑选分类器并设置权值,最终通过一组弱分类器组合构成强分类器。 相似文献
2.
3.
针对在已有人脸检测方法中采用单阈值所导致的误检率太高的问题,提出一种基于优化加权参数的快速AdaBoost训练检测算法。算法通过改变弱分类器加权参数求解公式的方法,保证了在低误检率的前提下也能获得低误警率;通过特征值曲线自适应得到双阈值,然后构造双阈值弱分类器并进行集成,形成强分类器。实验结果表明,该算法不仅能够有效地提高检测精度,而且,由于双阈值能够减少搜索次数,从而使训练和检测时间也有明显的改进。 相似文献
4.
基于肤色和AdaBoost算法的人脸检测 总被引:2,自引:0,他引:2
本文介绍了一种将肤色信息和AdaBoost算法相结合的人脸检测方法。先用肤色分割法排除掉非肤色区域的干扰,然后用AdaBoost算法训练的分类器对肤色区域进行检测,该方法在保证检测率的同时,大大减少了目标区域的误检率,提高了人脸检测准确率。 相似文献
5.
针对传统AdaBoost算法存在的所需样本数量大、训练时间长、分类器检测费时的问题,提出一种快速样本选择和分类器优化算法.首先,提出一个基于SVM的训练样本选择算法,来提高样本的有效率;其次,提出一种将多个分类器组合成一个新的分类器的算法,减少了分类器的总数,且新生成的分类器比原有多个分类器分类能力更强,提高了检测性能.实验结果表明,算法能够用更少的样本与时间达到与传统方法相同的性能. 相似文献
6.
AdaBoost是机器学习中比较流行的分类算法.通过研究弱分类器的特性,提出了两种新的弱分类器的阈值和偏置计算方法,二者可以使弱分类器识别率大于50%,从而保证在弱分类器达到一定数目的情况下,AdaBoost训练收敛.对两种阈值和偏置计算方法的仿真实验结果表明,在错分率降可接受的范围内,二者均使用较少的弱分类器便可获得高识别率的强分类器. 相似文献
7.
AdaBoost方法是目前较流行的一种图像检测方法,它是基于统计模型的检测方法。针对目前一些人脸检测方法误检率高、检测速度慢的问题,详细介绍AdaBoost算法的基本原理,并应用OpenCV程序的开发,实现检测速度快、检测率和鲁棒性高的人脸检测。 相似文献
8.
AdaBoost方法是目前较流行的一种图像检测方法.它是基于统计模型的检测方法。针对目前一些人脸检测方法误检率高、检测速度慢的问题,详细介绍AdaBoost算法的基本原理,并应用OpenCV程序的开发.实现检测速度快、检测率和鲁棒性高的人脸检测。 相似文献
9.
网络入侵检测系统IDS中,异常数据所占的比例非常小,属于小类样本,却是检测的目标。在AdaBoost算法基础上进行改进,通过对大类样本权重设置阈值,对权值超过阈值的样本进行相应处理,来削弱分类器对大类样本错分的重视程度,减轻下一级训练的负担,从而有效地强化对小类错分样本的学习,提高入侵检测的精度,降低误报率和漏报率。方法在KDD-99数据集上进行实验,并与SVM方法检测结果进行比较,取得了很好的效果。 相似文献
10.
11.
针对实时行人检测中AdaBoost级联分类算法存在的问题,改进AdaBoost级联分类器的训练算法,提出了Ada-Boost-SVM级联分类算法,它结合了AdaBoost和SVM两种算法的优点.对自定义样本集和PET图像库进行行人检测实验,实验中选择固定大小的窗口作为候选区域并利用类Haar矩形特征进行特征提取,通过AdaBoost-SVM级联分类器进行分类.实验结果表明AdaBoost-SVM级联分类器的分类器准确率达到99.5%,误报率低于0.05%,优于AdaBoost级联分类器,训练时间要远远小于SVM分类器. 相似文献
12.
随着车辆迅速增加,智能交通系统中的监控系统需要在复杂环境中快速、准确地检测车辆,在现有研究的基础上提出一种高效的车辆检测方案。首先选取像素自适应分割算法对其背景模型作线性优化,减少运算复杂度,提取前景斑点为定义区域;然后通过设定阈值确定感兴趣区域;在感兴趣区域里,选取哈尔(Haar-like)特征和方向梯度直方图特征,输入到优化后的AdaBoost+支持向量机(support vector machine,SVM)级联分类器中进行车辆检测。大量的实验证明了线性化像素自适应分割算法的优越性、AdaBoost+SVM级联分类器快速性、整体车辆检测算法在检测车辆时的实时性和光照鲁棒性。 相似文献
13.
鉴于特征属性选择在网络流量分类中占据重要地位,为了确定最优特征子集,利用CFS作为适应度函数的改进遗传算法(GA-CFS),从网络流量的249个属性空间中提取主要属性并最终选定18个特征组合作为最优特征子集。通过AdaBoost算法把一系列的弱分类器提升为强分类器,对网络流量进行了深入的分类研究。实验结果表明,基于GA-CFS和AdaBoost的流量组合分类方法较弱分类器具有较高的分类准确率。 相似文献
14.
改进的基于AdaBoost算法的人脸检测方法* 总被引:4,自引:0,他引:4
针对传统AdaBoost算法的不足,分析了训练过程中出现的退化问题及样本权重扭曲的现象,并提出了解决这一问题的有效方法.该方法对样本权重的更新规则进行了适当的调整,即为每一轮循环设定一个权重更新阈值,根据样本是否被错误分类以及当前权重是否大于该阈值来更新样本权重,从而限制了困难样本权重的过分增大.使用该方法训练级联人脸检测器,试验结果表明,该方法较好地解决了传统AdaBoost算法所出现的退化问题,在保证检测率的同时降低了误检率. 相似文献
15.
为给激光雷达三维点云目标检测提供一种更智能、更稳健的信息处理算法,提出一种基于激光雷达获取的点云数据的车辆目标检测算法。采用局部高程对地面进行拟合,对目标场景进行预分类;根据目标的几何尺寸建立ROI (感兴趣区域),对该区域内的点云数据进行聚类分析,大致检测出目标物体。由于现实场景中往往存在与目标高程相近的物体,采用基于Harr-like特征的AdaBoost分类器对ROI进行复核,划定检测目标。实验结果表明,在目标遮挡率为50%的情况下,算法的检测准确率也能将近90%。 相似文献
16.
基于肤色和AdaBoost算法的彩色人脸图像检测 总被引:1,自引:0,他引:1
针对肤色检测对复杂背景下的图像误检率高和AdaBoost算法对多姿态、多人脸图像检测效果不理想的问题,将基于肤色的人脸检测与基于AdaBoost算法的人脸检测结合起来,提出一种新的人脸检测方法,即首先利用肤色和形态学操作分割肤色区域,再根据人脸区域的统计特性筛选出人脸候选区域,然后用AdaBoost级联分类器对候选区域扫描,以精确定位人脸.实验表明,该方法同时具有肤色检测正确率高与AdaBoost算法误检率低的优点,可以有效地运用于多姿态、多人脸和复杂背景的情况,具有较好的检测效果. 相似文献
17.
针对微博上存在的大量垃圾评论,提出一种基于AdaBoost的微博垃圾评论识别方法。该方法首先提取表示微博评论的特征值向量,由8个特征值组成,然后通过AdaBoost算法在这些特征上训练出若干个比随机预测好的弱分类器,最后将得到的弱分类器加权集合成高精度的强分类器。从实际的热门新浪微博中提取评论数据集进行实验,结果表明所选取的8个特征是有效的,该方法对于微博垃圾评论的识别拥有较高的识别率。 相似文献