共查询到17条相似文献,搜索用时 78 毫秒
1.
本文对AdaBoost算法进行了介绍,并从整个数学推导过程中分析怎样挑选分类器并设置权值,最终通过一组弱分类器组合构成强分类器。 相似文献
2.
工程实际中,往往通过对比两个AdaBoost算法在相同弱分类器数量条件下的错分率来比较算法性能,这样就忽略了在弱分类器数量增加时,错分率的波动会造成对比不准确的问题。为此,分别针对分类器性能的分类准确率、收敛速度和稳定性,提出了稳态错分率、调节规模、振荡度三个量化指标,构成了一个相对完备的评价体系。实验表明,该评价体系能更全面反映AdaBoost的分类效果。 相似文献
3.
AdaBoost是机器学习中比较流行的分类算法.通过研究弱分类器的特性,提出了两种新的弱分类器的阈值和偏置计算方法,二者可以使弱分类器识别率大于50%,从而保证在弱分类器达到一定数目的情况下,AdaBoost训练收敛.对两种阈值和偏置计算方法的仿真实验结果表明,在错分率降可接受的范围内,二者均使用较少的弱分类器便可获得高识别率的强分类器. 相似文献
4.
基于双阈值运动区域分割的AdaBoost行人检测算法 总被引:1,自引:0,他引:1
结合单目摄像机静止拍摄的视频序列使用背景差法或AdaBoost算法检测行人时分别存在易受噪声干扰或检测速度慢的问题,提出一种双阈值运动区域分割的AdaBoost快速行人检测算法。首先建立背景帧,利用前景帧与背景帧的差分图像拟合噪声曲线,提取噪声与亮暗运动目标的阈值,消除噪声,分割出运动区域;然后通过AdaBoost学习算法选择少量有效的Haar-like弱矩形特征构造强分类器;最后在运动区域利用强分类器检测是否包含行人。实验结果表明,该方法迅速缩小了检测范围,加快了检测速度,降低了误检率。 相似文献
5.
6.
针对Haar-like特征的缺陷以及AdaBoost算法存在训练耗时的问题,提出一种基于协方差特征的改进AdaBoost人脸检测算法。该方法用协方差特征代替Haar-like特征进行特征提取;然后使用特征裁剪和动态权重裁剪相结合的裁剪AdaBoost算法,训练得到基于协方差特征的强分类器。实验结果表明,相对于基于Haar-like特征的AdaBoost算法,该算法性能没有明显退化且很大程度上提高了训练速度。 相似文献
7.
基于肤色分割和AdaBoost算法的彩色图像的人脸检测 总被引:1,自引:0,他引:1
文章提出了肤色分割和AdaBoost算法结合的人脸检测算法。首先,对彩色图像进行肤色分割,通过人脸肤色的统计特征得到候选人脸区域:然后,基于AdaBoost算法,使用由强分类器组成的级联分类器对候选人脸区域进行扫描,最终得到精确定位的人脸。实验证明,该方法具有肤色检测快速和AdaBoost算法误检率低的优点,可以有效的运用于多姿态、多人脸和复杂背景的情况。 相似文献
8.
9.
10.
针对一些多标签文本分类算法没有考虑文本-术语相关性和准确率不高的问题,提出一种结合旋转森林和AdaBoost分类器的集成多标签文本分类方法。首先,通过旋转森林算法对样本集进行分割,通过特征变换将各样本子集映射到新的特征空间,形成多个具有较大差异性的新样本子集。然后,基于AdaBoost算法,在样本子集中通过多次迭代构建多个AdaBoost基分类器。最后,通过概率平均法融合多个基分类器的决策结果,以此做出最终标签预测。在4个基准数据集上的实验结果表明,该方法在平均精确度、覆盖率、排名损失、汉明损失和1-错误率方面都具有优越的性能。 相似文献
11.
一种基于AdaBoost-SVM的流量分类方法 总被引:1,自引:0,他引:1
针对传统分类方法的缺陷, 提出了一种基于AdaBoost-SVM的流量方法。该方法利用K-L变换从大量冗余流量特征中遴选出少量本征特征, 有效降低了算法的处理复杂度; 应用AdaBoost机制将一次分类过程等分成若干层基于支持向量机的弱分类器, 使得分类方法简单、易于实现; 通过分层组合和迭代权重的方法聚焦在困难分类的数据样本上, 提高了分类器的准确性能。理论分析和实验结果表明:在降低计算复杂度的同时, AdaBoost-SVM算法的准确性能够达到95%。 相似文献
12.
提出了一种改进的AdaBoost算法与支持向量机组合的分类方法,用来处理多类别分类。采用规则抽样来解决支持向量机分类中正负样本的不平衡性,改进AdaBoost算法,使其在初始化时考虑样本分布稀疏的重要性,有利于稀有类样本的正确划分。实验结果表明,此方法与标准支持向量机分类器相比,泛化性能有一定程度的提高。 相似文献
13.
针对不平衡分类中小类样本识别率低问题,提出一种基于主动学习不平衡多分类AdaBoost改进算法。首先,利用主动学习方法通过多次迭代抽样,选取少量的、对分类器最有价值的样本作为训练集;然后,基于不确定性动态间隔的样本选择策略,降低训练集的不平衡性;最后,利用代价敏感方法对多分类AdaBoost算法进行改进,对不同的类别给予不同的错分代价,调整样本权重更新速度,强迫弱分类器"关注"小类样本。在临床经胸超声心动图(TTE)测量数据集上的实验分析表明:与多分类支持向量机(SVM)相比,心脏病总体识别率提升了5.9%,G-mean指标提升了18.2%,瓣膜病(VHD)识别率提升了0.8%,感染性心内膜炎(IE)(小类)识别率提升了12.7%,冠心病(CAD)(小类)识别率提升了79.73%;与SMOTE-Boost相比,总体识别率提升了6.11%,G-mean指标提升了0.64%,VHD识别率提升了11.07%,先心病(CHD)识别率提升了3.69%。在TTE数据集和4个UCI数据集上的实验结果表明,该算法在不平稳多分类时能有效提高小类样本识别率,并且保证其他类别识别率不会大幅度降低,综合提升分类器性能。 相似文献
14.
网络入侵检测系统IDS中,异常数据所占的比例非常小,属于小类样本,却是检测的目标。在AdaBoost算法基础上进行改进,通过对大类样本权重设置阈值,对权值超过阈值的样本进行相应处理,来削弱分类器对大类样本错分的重视程度,减轻下一级训练的负担,从而有效地强化对小类错分样本的学习,提高入侵检测的精度,降低误报率和漏报率。方法在KDD-99数据集上进行实验,并与SVM方法检测结果进行比较,取得了很好的效果。 相似文献
15.
基于距离函数和损失函数正则化的权值更新模式,使用相关熵距离函数,Itakura-Saito距离函数,指数一次近似距离和相关熵损失函数结合,实现了三种AdaBoost弱分类器权值更新算法。使用UCI数据库数据对提出的三种算法AdaBoostRE,AdaBoostIE,AdaBoostEE与Real AdaBoost,Gentle AdaBoost和Modest AdaBoost算法作了比较,可以看到提出的AdaBoostRE算法预测效果最好,优于Real AdaBoost,Gentle AdaBoost和Modest AdaBoost算法。 相似文献
16.
针对微博上存在的大量垃圾评论,提出一种基于AdaBoost的微博垃圾评论识别方法。该方法首先提取表示微博评论的特征值向量,由8个特征值组成,然后通过AdaBoost算法在这些特征上训练出若干个比随机预测好的弱分类器,最后将得到的弱分类器加权集合成高精度的强分类器。从实际的热门新浪微博中提取评论数据集进行实验,结果表明所选取的8个特征是有效的,该方法对于微博垃圾评论的识别拥有较高的识别率。 相似文献