首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
悬浮态磁化焙烧菱铁矿及冷却条件对产品的影响   总被引:3,自引:2,他引:3  
针对传统的堆积态菱铁矿焙烧工艺具有气固接触面积小、能耗大、矿石质量不均匀、容易产生"过烧"和"欠烧"的缺点,开展了悬浮态磁化焙烧细粒菱铁矿的试验,研究了不同冷却条件对焙烧产品的影响.研究结果表明,冷却速度是影响焙烧矿质量的重要因素,将焙烧矿在空气中快速冷却可跳过500~400℃相变激烈区,减小氧化程度,获得良好指标.  相似文献   

2.
为了提高某低品位菱铁矿的铁品位,采用了煤基直接还原-磁选工艺,对菱铁矿块矿进行了焙烧条件试验。结果表明:在焙烧温度1050℃,焙烧时间100 min,菱铁矿粒度10~16 mm,煤的粒度0~5 mm,煤矿质量比1.5:1的条件下进行还原焙烧,可得到金属化率93.13%的焙烧矿;该焙烧矿在磨矿粒度为-0.074 mm 80%以上,磁场强度为0.1 T,磁选时间为15 min的条件下进行磁选试验后可得到精矿铁品位为91.11%,铁回收率为97.15%的铁粉。且-25 mm的菱铁矿块矿全粒级直接还原效果良好,焙烧矿的金属化率可达到92.6%以上,磁选后的精矿铁品位高达89.4%,回收率在93.5%。  相似文献   

3.
某低品位难选菱铁矿分级磁化焙烧试验研究   总被引:5,自引:5,他引:0  
针对回转窑磁化焙烧过程中细粒级粉矿存在的容易“结圈”以致焙烧作业率偏低的问题,对某低品位难选菱铁矿进行了分级闪速磁化焙烧试验研究。结果表明,将原矿TFe品位24.68%的菱铁矿筛分成块矿与粉矿两种产品,采用块矿回转窑焙烧、粉矿闪速焙烧的联合焙烧工艺,可获得磁选精矿产率33.66%、TFe品位60.91%、铁回收率83.07%的选矿指标。  相似文献   

4.
某菱铁矿磁化焙烧?磁选工艺试验研究   总被引:5,自引:5,他引:0  
为了更好地利用菱铁矿资源,对云南某铁品位为40.84%的难选菱铁矿石进行了磁化焙烧-磁选工艺试验研究,在不添加还原剂的条件下,在焙烧温度800 ℃、焙烧时间60 min时得到焙烧矿,焙烧矿经磁选后获得了铁精矿产率61.25%、品位64.65%、回收率96.96%的指标。可为高效利用菱铁矿资源的工艺设计提供依据。  相似文献   

5.
大西沟菱铁矿煤基回转窑磁化焙烧半工业试验   总被引:6,自引:2,他引:4  
用Φ1.3 m×24 m煤基回转窑对大西沟菱铁矿(品位TFe 26.82%)进行了中性磁化焙烧半工业试验。控制合适的焙烧温度场和气氛场, 焙烧矿排入水中淬冷。水冷焙烧矿磨矿至95.60% -0.045 mm, 经磁场强度1.19×102 kA/m的磁选管选别得磁精矿的产率44.52%, 品位TFe 59.84%, 回收率86.41%的理想指标, 为我国菱铁矿的开发利用开辟了新的有效途径。  相似文献   

6.
对云南某难选菱铁矿进行了磁化焙烧—磁分选试验研究。研究结果表明:菱铁矿经过磁化焙烧-弱磁分选后(优选条件为:焙烧温度1050 ℃、焙烧时间120 min、m(煤)/m(矿)比3:20、助剂/矿质量比1:10和磨矿细度-0.074 mm粒级占90%),可以获得铁精矿品位为70.22%,回收率83.67%的良好指标。在此基础上进行了半工业验证试验并获得了铁品位为75.03%,回收率为81.91%的铁精矿,其中含磷0.09%,含硫0.25%,含硅9.45%。本研究为类似难选菱铁矿资源的分选提供了参考依据。  相似文献   

7.
悬浮态磁化焙烧菱铁矿粉料试验研究   总被引:9,自引:1,他引:8  
对粒度为40~60 μm的大西沟菱铁矿粉料进行悬浮磁化焙烧试验,研究了焙烧温度、焙烧时间和焙烧气氛对焙烧产品质量的影响规律。结果表明:温度是焙烧的主要影响因素,焙烧温度越高,达到最佳焙烧效果所需的时间越短。随着焙烧气氛中氧含量的增加,焙烧产品将因氧化而导致质量逐渐变差。在菱铁矿完全分解之前,FeCO3的分解程度是焙烧效果的主要影响因素,延长焙烧时间对提高焙烧产品质量有利;在菱铁矿完全分解之后,氧化程度是焙烧效果的主要影响因素,延长焙烧时间会使焙烧产品质量下降。大西沟菱铁矿粉料在氧含量为1.05%的弱氧化气氛中于800 ℃或850 ℃下悬浮磁化焙烧1 min,可获得磁选精矿铁品位不低于58.21%、铁回收率不小于79.39%的焙烧产品。  相似文献   

8.
菱铁矿干式冷却磁化焙烧技术研究   总被引:10,自引:5,他引:10  
为适应西部地区的铁矿资源和自然条件,对陕西大西沟菱铁矿矿石进行了试验研究。结果表明,应用中性磁化焙烧-干式自然冷却-异地磁选技术,将在700℃下焙烧70min的焙烧矿先封闭冷却至400~300℃,再排入空气中冷却至室温,可形成强磁性的磁铁矿和γ-Fe2O3;焙烧矿的磁选流程试验获得了精矿铁品位59.56%~59.37%、铁回收率达72.03%~73.72%的良好指标,为水资源缺乏的西部地区丰富的菱铁矿资源找到了新的开发利用途径。  相似文献   

9.
磁化焙烧工艺作为处理难选铁矿资源的有效工艺,近年来在菱铁矿资源开发中的应用研究取得了巨大进展。在菱铁矿磁化焙烧的工业化生产中,焙烧产品的冷却是影响焙烧产品品质的重要环节。以西北某矿区菱铁矿为研究对象,通过拣选—强磁选—重选流程得到纯度为80.6%的菱铁矿作为试验物料进行磁化焙烧,考察了惰性气氛冷却、水淬冷却、空气气氛冷却对焙烧产品的影响,深入研究了空气气氛冷却方式下,焙烧产品在不同氧化温度、氧化时间条件下的氧化行为和相变情况。结果表明:焙烧产品在惰性气氛冷却和水淬方式冷却过程中基本不发生氧化反应;在空气冷却方式下,氧化温度和氧化时间对菱铁矿磁化焙烧产品的影响显著;在氧化温度为100℃,焙烧产品基本不发生氧化;在氧化温度高于300℃,焙烧产品开始发生明显氧化;氧化温度为500℃、氧化时间2.5 min时,焙烧产品中的磁铁矿全部被氧化。磁化焙烧产品氧化后生成α-Fe_2O_3和γ-Fe_2O_3两种铁物相,在氧化反应过程中先生成γ-Fe_2O_3,后生成α-Fe_2O_3。试验结果可以为菱铁矿磁化焙烧工艺的优化提供参考。  相似文献   

10.
大西沟菱铁矿闪速磁化焙烧-磁选探索试验   总被引:8,自引:5,他引:3  
采用自主研发的闪速磁化焙烧中试装置,对铁品位为21.21%的大西沟铁矿菱铁矿-1 mm粉矿进行闪速磁化焙烧-弱磁选探索性试验,获得了铁精矿产率为38%~40%,铁品位>56%,金属回收率>80%的良好试验指标,为难选弱磁性铁矿石的高效利用开辟了新的工艺路线。  相似文献   

11.
菱铁矿是我国重要的铁矿石资源,悬浮磁化焙烧是处理复杂难选铁矿的有效方法。本文采用实验室小型悬浮磁化焙烧装置,针对重庆接龙铁矿,开展悬浮磁化焙烧工艺优化及焙烧温度对磁化焙烧产品性能的研究。研究结果表明,接龙铁矿预氧化产品在焙烧温度为500℃、焙烧时间为3 min,CO用量为0.2 L/min的条件下,获得了铁精矿品位56.31%,回收率92.05%的试验指标。XRD分析表明,在450~550℃范围内,还原焙烧3 min,均可实现大部分的赤铁矿转变为磁铁矿,提高温度有利于赤铁矿还原更彻底,还原温度对焙烧产品的磁性影响较小。预氧化样品经还原焙烧后,比表面积降低,存在孔结构坍塌破坏后被填充的现象,导致孔尺寸增加。孔结构的改变,可能对后续的磨矿磁选造成一定的影响。研究结果对认识悬浮磁化焙烧规律有一定的意义。  相似文献   

12.
以磁铁矿和赤铁矿纯矿物为研究对象,考察了气体流量、一氧化碳浓度、焙烧温度、焙烧时间对磁铁矿诱导赤铁矿磁化焙烧过程的影响。结果表明:随着磁铁矿添加量的增加,焙烧产品饱和质量磁矩和反应分数都逐渐提高,即磁铁矿对赤铁矿磁化焙烧的诱导作用越来越强。随着磁化焙烧气体流量、焙烧温度、焙烧时间的增加,焙烧产品饱和质量磁矩和反应分数的增大趋势总体来说先增强后减弱,即磁铁矿对赤铁矿磁化焙烧的诱导作用是先增强后减弱的;随着一氧化碳浓度的增加,磁铁矿对赤铁矿磁化焙烧的诱导作用逐渐减弱。试验结果对优化铁矿石焙烧工艺,提高磁化焙烧过程焙烧效率具有一定的指导意义。  相似文献   

13.
我国有大量的铁矿石资源无法通过常规选矿方法进行开发利用,流态化磁化焙烧是处理该类矿石最有效的方法,成为近年来的研究热点。综述了铁矿石磁化焙烧机理研究进展,总结了流态化磁化焙烧技术与装备发展历史和研发现状,重点介绍了沸腾炉磁化焙烧、闪速磁化焙烧、流化床磁化焙烧及悬浮磁化焙烧技术装备特点和应用示范,并分析了流态化磁化焙烧技术在菱铁矿、褐铁矿、赤铁矿等难选弱磁性铁矿资源及铁尾矿二次资源利用方面的发展前景。  相似文献   

14.
董红军  陈昌 《矿冶工程》2022,42(6):142-145
对广西某铝厂典型赤泥强磁选预富集粗精矿的闪速磁化焙烧过程进行了研究, 通过与马弗炉磁化焙烧试验对比, 研究了不同物料反应状态的反应热动力学过程及其工艺技术指标。结果表明, 闪速磁化焙烧工艺能充分利用赤泥颗粒特性, 在数十秒时间内完成马弗炉需要45 min以上才能完成的焙烧过程, 并取得水平相当的工艺产品指标, 凸显了闪速磁化焙烧工艺在赤泥消纳领域的潜力。  相似文献   

15.
磁化焙烧工艺已成为处理难选铁矿资源的主要手段,焙烧产品冷却方式是影响磁化焙烧产品选别指标的重要因素。以海南某赤铁矿纯矿物为研究对象,考察了其磁化焙烧后惰性气氛、水淬冷却和空气气氛冷却方式对焙烧产品磁铁矿氧化程度的影响。结果表明:惰性气氛可以有效防止磁铁矿发生氧化反应,产品单位质量磁矩最大,为74.2 A?m2/kg;水淬冷却过程中发生轻微的氧化反应,产品单位质量磁矩为72.5 A?m2/kg;而空气冷却方式下,磁铁矿冷却过程中部分氧化为赤铁矿,焙烧产物的单位质量磁矩仅为37.6 A?m2/kg。空气气氛冷却受冷却初始温度影响较大,随着冷却初始温度的降低,冷却产物FeO含量逐渐增加,单位质量磁矩逐渐增加,比磁化系数逐渐增加。试验结果可以为难选铁矿石磁化焙烧过程优化提供参考。  相似文献   

16.
甘肃某镜铁矿石主要有价元素为铁,TFe含量为59.61%,原矿中94.79%的铁以赤褐铁的形式存在,脉石矿物主要为石英,含量为8.11%。为考察焙烧过程主要影响因素对焙烧产物的物相转化与磁性转变的影响,进行了悬浮焙烧试验。结果表明:镜铁矿经悬浮磁化焙烧后,焙烧产物中铁主要以磁铁矿的形式存在,磁性明显增强;随着焙烧温度升高、焙烧时间延长、CO浓度增加、总气量增加,焙烧产品中镜铁矿含量均逐渐降低,磁铁矿含量均逐渐增加,焙烧产品饱和磁化强度和最大比磁化系数均先提高后降低;在焙烧温度为550 ℃、焙烧时间为4 min、CO浓度为20%、总气量为600 mL/min时,焙烧产物的比饱和磁化强度为63.66 A·m2/kg、最大比磁化系数为5.02×10-4 m3/kg;焙烧过程铁物相按照Fe2O3→Fe3O4→FeO的反应顺序进行,焙烧产物铁物相的转化会影响铁矿物磁性的强弱,并且主要与磁铁矿的含量相关。试验结果可以为我国镜铁矿资源悬浮焙烧过程机理研究提供理论依据。  相似文献   

17.
马钢姑山铁矿石TFe品位为37.68%,主要含铁矿物为赤铁矿,脉石成分主要为SiO2和Al2O3,有害元素P含量较高,采用传统选矿技术难以获得良好的技术经济指标,而对难选铁矿进行磁化焙烧是一种有效的预处理手段。针对姑山铁矿石开展了磁化焙烧—弱磁选试验研究,并探究了焙烧给矿粒度、焙烧温度、还原气浓度、焙烧时间对磁化焙烧效果的影响。结果表明:在焙烧给矿粒度为-0.074 mm占50%、焙烧温度500℃、CO气体浓度40%、焙烧时间20 min、气体流量500 mL/min的条件下进行磁化还原焙烧,焙烧产品经磨矿—磁选—再磨—磁选—三段磨矿—磁选工艺,可获得铁品位63.98%、铁回收率83.32%、P含量0.15%的铁精矿。产品指标优于现有工艺,研究结果可为马钢姑山铁矿的高效利用提供新思路。  相似文献   

18.
张毅  余莹  张五志  高鹏 《金属矿山》2021,50(7):142-145
为了确定适宜的磁化焙烧条件,采用磁化焙烧—磁选工艺,对鞍钢某铁尾矿进行了系统的试验研究,考察了焙烧温度、焙烧时间、还原气体浓度以及气体流速对磁化焙烧效果的影响,结果表明:①鞍钢铁 尾矿TFe品位为14.70%,主要杂质SiO2含量为66.17%,有害元素P、S、Na的含量较少;铁尾矿中的铁主要以赤、褐铁矿的形式存在,分布率为83.87%;铁尾矿中主要有用矿物为磁铁矿、赤铁矿,主要脉石矿物为石英。 ②该铁尾矿适宜的焙烧条件为:焙烧温度580 ℃、焙烧时间5 min、CO浓度30%、气体流速500 mL/min;在此条件下获得的焙烧产品,经弱磁选(磁场强度为87.12 kA/m)选别,可获得TFe品位62.17%、TFe回收率 84.02%的磁选精矿。③焙烧产品的铁物相分析结果表明,经过磁化焙烧,试样中磁性铁的含量和分布率显著提高,赤、褐铁矿中的铁含量和分布率则大幅度降低。不同焙烧时间下产品的XRD谱图结果进一步说明铁尾矿 中的赤铁矿转换成了磁铁矿。研究结果可为同类型尾矿的开发利用提供参考。  相似文献   

19.
分散态磁化焙烧-磁选回收某金尾矿中的铁   总被引:1,自引:0,他引:1  
采用分散态磁化焙烧-磁选方法对某金尾矿中含量为27.26%的铁进行回收试验,着重考察了焙烧时间、磁场强度、分散剂(六偏磷酸钠)用量、絮凝剂(油酸+煤油)用量对精矿铁品位和回收率的影响。试验结果表明:将原料于850 ℃和CO所占气体体积分数为2%的气氛中分散态磁化焙烧5 min,对得到的焙烧矿在磁场强度为111.44 kA/m、分散剂和絮凝剂掺量分别为2.50和5.64 kg/t的条件下进行1次弱磁选,可以获得品位为57.15%、回收率为81.43%的铁精矿。  相似文献   

20.
焙烧-磁选法是处理低品位难选氧化铁矿石的有效方法。归纳了铁矿焙烧过程动力学研究常用的3种表征方法,着重介绍了基于热重分析技术的静态法和动态法在铁矿石焙烧过程动力学研究方面的运用。总结了磁化焙烧、直接还原和深度还原过程动力学近年来的研究成果。指出菱铁矿磁化焙烧过程根据TG和DTG曲线可分为两个阶段,其反应机理分别符合随机核化和核生长机理;铁矿石直接还原过程根据TG和DTG曲线分为几个阶段,再由各阶段活化能的差异分为缓慢反应阶段和快速反应阶段,由此可以找出焙烧过程的限制环节;赤铁矿在深度还原过程中经历缓慢反应-快速反应-趋于平衡3个阶段,整体反应符合随机成核及长大模型,活化能约为320 kJ/mol。指出今后应加强对实际矿石磁化焙烧动力学的研究,为实际难选矿磁化焙烧关键技术提供理论支撑;还应注重焙烧过程热力学与动力学研究的结合,对焙烧过程进行计算机模拟等方面的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号