首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By analyzing the changes with time of the electrical conductivity of polycrystalline Al2O3 after the O2 pressure was changed, a defect diffusion coefficient was obtained which was assigned to the Al or O ion, whichever is the faster-diffusing species. Both decreased grain size and MgO addition increase the defect diffusion coefficient. The grain-boundary defect diffusion coefficient for the undoped material was estimated to be: and that for the MgO-doped material was over the range 1100° to 1350°C (δ is the effective thickness of the boundary and s the coefficient of segregation of defects to the boundary region). The mechanism of grain-boundary diffusion is discussed in terms of defect mobility.  相似文献   

2.
Crystallographic notation for Al2O3 is reviewed, with particular reference to the correct basis to be used in describing slip systems. A Groves-and-Kelly calculation showed that the combination of pyramidal slip on {11¯02}<11¯01> and basal slip on (0001){112¯0} will allow homogeneous deformation of Al2O3 polycrystals. Furthermore, operation of either the {101¯1}<1¯011> or the {011¯2}<2¯021> slip system will also satisfy the Von Mises criterion, since each system is capable of 5 independent deformation modes. Electron microscopy of an Al2O3 polycrystal deformed ≅5% at 1150°C under a hydrostatic confining pressure confirmed that pyramidal slip had occurred.  相似文献   

3.
4.
A study has been made of the binary system Fe2O2-TiO2 by solid-state reactions under dry and hydrothermal conditions. Under dry conditions only one binary compound, pseudobrookite (Fe2O3-TiO2), was formed and no evidence of solid solution on either side of this compound at temperatures up to 1200°C. was obtained. The system under these conditions is a simple binary with a single binary compound. Under hydrothermal conditions of 300° C. and 1200 Ib. per sq. in. the system is apparently also binary, with a single unstable compound closely resembling, if not identical with, the naturally occurring mineral arizonite (ferric metatitanate, Fe2(TiO3)3).  相似文献   

5.
Alpha alumina with additions of TiO2 sintered more rapidly than "pure" alumina. The rate of initial sintering increased approximately exponentially with titania concentration up to a percentage beyond which the rate of sintering remained approximately constant or decreased slightly with additional titania. The concentration which produces the maximum rate of sintering is thought to be the solubility limit of TiO2 in Al2O3. For alumina particles larger than about 2 μm, the kinetic process was mainly grain-boundary diffusion. With smaller particles, volume diffusion increased. The "solubility limit" increased with decreasing particle size, indicating an excess surface concentration of TiO2. The data may be interpreted in terms of a region of enhanced diffusion at the grain boundary that increases with TiO2 concentration. With small alumina particles, this region is large enough to become a significant portion of the volume of the particle, and the small particles appear to sinter by volume diffusion kinetics, but the diffusion coefficient corresponds to an enhanced diffusion coefficient.  相似文献   

6.
7.
Subsolidus phase relationships in the Ga2O3–Al2O3–TiO2 system at 1400°C were studied using X-ray diffraction. Phases present in the pseudoternary system include TiO2 (rutile), Ga2−2 x Al2 x O3 ( x ≤0.78 β-gallia structure), Al2−2 y Ga2 y O3 ( y ≤0.12 corundum structure), Ga2−2 x Al2 x TiO5 (0≤ x ≤1 pseudobrookite structure), and several β-gallia rutile intergrowths that can be expressed as Ga4−4 x Al4 x Ti n −4O2 n −2 ( x ≤0.3, 15≤ n ≤33). This study showed no evidence to confirm that aluminum substitution of gallium stabilizes the n =7 β-gallia–rutile intergrowth as has been mentioned in previous work.  相似文献   

8.
This study examined pressure consolidation of amorphous Al2O3–15 mol% Y2O3 powders prepared by co-precipitation and spray pyrolysis. The two amorphous powders had similar true densities and crystallization sequences. Uniaxial hot pressing was carried out at 450°–600°C with a moderate pressure of 750 MPa. The co-precipitated powder could be hot pressed to a maximum relative density of 98% and remained amorphous. Pressure adversely affected the densification of the spray-pyrolyzed powder by favoring an early crystallization of γ-Al2O3 phase at 580°C. Plastic deformation of the amorphous phase is believed to be responsible for the large densification of the amorphous powders.  相似文献   

9.
10.
Composites containing Ce-ZrO2, Al2O3, and aligned Al2O3 platelets were produced by centrifugal consolidation and pressureless sintering, followed by heat treatments at 1600°C for varied duration. Constituents in the consolidated microstructures were either uniformly distributed throughout or segregated into gradient layers, depending critically on platelet content. Quantitative image analysis was used to examine microstructure development with heat treatment. Changes in the volume fraction, dimensional anisotropy, and gradient of pores and platelets, as well as changes in the phase gradient, were quantified. Microstructure development was strongly dependent on the initial microstructure design attained from suspension processing.  相似文献   

11.
The sintering behavior of an Al2O3 compact containing uniformly dispersed Al2O3 platelets has been investigated. The results reveal a significant decrease in the sintering rate as well as the formation of voids and cracklike defects in the presence of nonsinterable platelets. The addition of a small amount (2 vol%) of tetragonal-ZrO2 particles enhances the sintering rate, increases end-point density (∼99.5% of theoretical density) and prevents formation of sintering defects.  相似文献   

12.
The dynamic stress intensity factors, which were determined with newly developed bar impact facilities and a new data reduction procedure, for an Al2O3 ceramic and 29 vol% SiCw/Al2O3 composite were virtually identical, thus indicating that the short SiC whiskers were ineffective under dynamic fracture. SEM studies revealed five distinct fracture morphologies with increased percentage area of transgranular fracture in both materials with rapid crack propagation. Also, the high dynamic stress intensity factor caused multiple microscopic crack planes to form and then join as the crack advanced.  相似文献   

13.
A tentative phase diagram for the system Al203-Nd2O3 is presented. Three compounds were obtained: a β -A12O3-type compound, the perovskite NdAlO3, and Nd4Al2O9. The perovskite melts congruently (mp 2090°C), and the two other compounds exhibit incongruent melting behavior: β -Nd/Al2O3, mp 1900°C; Nd4Al2O9, mp 1905°C. Two eutectics exist with the following compositions and melting points: 80 mol% Al2O3, 1750°C; 23 mol% Al2O3,1800°C. Nd4Al2O9 decomposes in the solid state at 1780°C.  相似文献   

14.
The phase diagrams in the Al2O3–Cr2O3 and V2O3–Cr2O3 systems have been assessed by thermodynamic modeling with existing data from the literature. While the regular and subregular solution models were used in the Al2O3–Cr2O3 system to represent the Gibbs free energies of the liquid and solid phases, respectively, the regular solution model was applied to both phases in the V2O3–Cr2O3 system. By using the liquidus, solidus, and/or miscibility gap data, the interaction parameters of the liquid and solid phases were optimized through a multiple linear regression method. The phase diagrams calculated from these models are in good agreement with experimental data. Also, the solid miscibility gap and chemical spinodal in the V2O3–Cr2O3 system were estimated.  相似文献   

15.
In the system TiO2—Al2O3, TiO2 (anatase, tetragonal) solid solutions crystallize at low temperatures (with up to ∼ 22 mol% Al2O3) from amorphous materials prepared by the simultaneous hydrolysis of titanium and aluminum alkoxides. The lattice parameter a is relatively constant regardless of composition, whereas parameter c decreases linearly with increasing Al2O3. At higher temperatures, anatase solid solutions transform into TiO2 (rutile) with the formation of α-Al2O3. Powder characterization is studied. Pure anatase crystallizes at 220° to 360°C, and the anatase-to-rutile phase transformation occurs at 770° to 850°C.  相似文献   

16.
Using a multipass extrusion process, continuous porous Al2O3 body (∼41% porosity) was produced and used as a substrate to fabricate continuous porous TiO2/Al2O3 composite membrane. The diameter of the continuous pores of the porous Al2O3 body was about 150 μm. The TiO2 nanopowders dip coated on the continuous pore-surface Al2O3 body existed as rutile and anatase phases after calcination at 520°C in air. However, after aging of the fabricated continuous porous TiO2/Al2O3 composite membrane in 20% NaOH at 60°C for 24 h, a large number of TiO2 fibers frequently observed on the pore surface. The diameter of the TiO2 fibers was about 150 nm having a high specific surface area. However, after 48-h aging period, the diameter of the TiO2 fibers increased, which was about 3 μm. Most of the TiO2 fibers had polycrystalline structure having nanosized rutile and anatase crystals of about 20 nm.  相似文献   

17.
The formation of Al2TiO5 has been studied in equimolar Al2O3-TiO2 powder mixtures of ∼1μm particle sizes and moderate purity (∼99.8 wt%) at temperatures around 1300°C, where the free energy of formation is very small. Micro-structural development and reaction kinetics indicate that different mechanisms operate depending on the advancement of the reaction. The rapid initial reaction stage is interpreted as the nucleation-growth of Al2TiO5 cells in a virtually non-reacting matrix. The final reaction stage corresponds to the slow diffusion-controlled elimination of Al2O3 and TiO2 dispersoids trapped during the growth of the initial Al2TiO5 cells.  相似文献   

18.
Phase relations at liquidus temperatures in the system La2O3-TiO2 were studied in air. The existence of two previously unreported compounds, La2O3. TiO2 and 2La2O3-TiO2, is postulated on the basis of X-ray and microscopic examination of crystalline samples, and in the case of La2O3.-TiO2, on a maximum in the liquidus curve at that composition. Quenched liquids of the primary-phase field of rutile were found to be semiconducting. This property was related to oxygen loss from both liquid and crystalline phases and is discussed in the light of weight loss experiments, microscopic examination of quenched samples, and information obtained from the literature. Dielectric constant and loss factor of the compounds La2O3-TiO2, La2O3-2TiO2, and 2La2O3-9TiO2 are reported at 1 Mc over the temperature range 25° to 500°C.  相似文献   

19.
Reaction kinetics in a coarse equimolar powder mixture were slow enough to allow for the different stages to be identified, notably in the lower and higher temperature ranges, respectively. In the former ( T ≤ 1600 K), Al2TiO5 nucleation was hindered by the strain energy contribution to the overall driving force. The setting up of metastable layer sequences Al2TiO5/TiO2/Al2O3 was found to occur generally during subsequent growth. The high Al mobility in the TiO2 provided a rapid aluminum transport from the metastable Al2O3/TiO2 interface to the TiO2/Al2TiO5 front. At temperatures above ∼1700 K the Al2O3/TiO2 interface was very rapidly sealed off by Al2TiO5 formation. Reactant transport across the Al2TiO5 was slow because of the low mobilities in the product phase. Therefore, much lower product growth velocities were observed at higher temperatures than at lower temperatures.  相似文献   

20.
Gas pressure sintering kinetics of silicon nitride powder coated with 10 wt% (9:1) Al2O3 and TiO2 have been studied at 1850°C with a pressure schedule of 0.3 MPa in the first stage and 1 MPa in the second stage. The rates have been analyzed with a liquid-phase sintering model. Diffusion-controlled intermediate-stage kinetics have been observed. The role of second-step pressurization with nitrogen and argon has been determined by monitoring the kinetics. Pressurization at an earlier stage (∼90% relative density) reduces the densification rate but produces a denser material at the final stage. Although final density is greater, a porous surface layer forms on samples sintered with argon pressurization at the second stage. No such porous layer is formed in the case of pressurization with nitrogen. The mechanism of the intermediate-stage kinetics has been discussed with respect to the nature of the product analyzed by XRD after sintering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号