首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The present study demonstrates a possible configuration of a 200 MW chemical looping combustion (CLC) system with methane (CH4) as fuel. Iron oxide‐based oxygen carriers were used because of its non‐toxic nature, low‐cost, and wide availability. We analyzed the effects of different variables on the design of the system. For the air reactor (oxidizer), bed mass is independent, and for the fuel reactor (reducer), it decreases with increase in the conversion difference between the air and fuel reactors. On the other hand, the pressure drop in the air reactor is unchanged, whereas for the fuel reactor, it decreases with the same increase of conversion difference between air and fuel reactors. Also, entrained solid mass flow rate from the air to fuel reactor shows a decreasing trend. Bed mass, bed height, pressure drop, and residence time of the bed materials decrease with increase in the conversion rates in the air and fuel reactors. Residence time of bed material in the air and fuel reactor reduces with increase in the temperature of the air reactor. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A chemical looping combustion process for coal using interconnected fluidized beds with inherent separation of CO2 is proposed in this paper. The configuration comprises a high velocity fluidized bed as an air reactor, a cyclone, and a spout-fluid bed as a fuel reactor. The high velocity fluidized bed is directly connected to the spout-fluid bed through the cyclone. Gas composition of both fuel reactor and air reactor, carbon content of fly ash in the fuel reactor, carbon conversion efficiency and CO2 capture efficiency were investigated experimentally. The results showed that coal gasification was the main factor which controlled the contents of CO and CH4 concentrations in the flue gas of the fuel reactor, carbon conversion efficiency in the process of chemical looping combustion of coal with NiO-based oxygen carrier in the interconnected fluidized beds. Carbon conversion efficiency reached only 92.8% even when the fuel reactor temperature was high up to 970 °C. There was an inherent carbon loss in the process of chemical looping combustion of coal in the interconnected fluidized beds. The inherent carbon loss was due to an easy elutriation of fine char particles from the freeboard of the spout-fluid bed, which was inevitable in this kind of fluidized bed reactor. Further improvement of carbon conversion efficiency could be achieved by means of a circulation of fine particles elutriation into the spout-fluid bed or the high velocity fluidized bed. CO2 capture efficiency reached to its equilibrium of 80% at the fuel reactor temperature of 960 °C. The inherent loss of CO2 capture efficiency was due to bypassing of gases from the fuel reactor to the air reactor, and the product of residual char burnt with air in the air reactor. Further experiments should be performed for a relatively long-time period to investigate the effects of ash and sulfur in coal on the reactivity of nickel-based oxygen carrier in the continuous CLC reactor.  相似文献   

3.
采用“湍动床+快速床”作为煤基化学链燃烧(CLC)系统的空气反应器(AR),鼓泡床作为燃料反应器(FR),设计了流动密封阀和旋风分离器,分别用于隔绝2个反应器之间的气氛和进行气固分离,在冷态试验装置上分析研究了CLC系统的压力分布、固体循环流量、气体泄漏率及煤灰与循环载体的分离效果.结果表明:该串行流化床反应器之间气氛隔绝性良好,气体泄漏率较低,固体循环流量达到甚至超过设计标准,FR二级旋风分离器的分离效率接近100%,FR中煤灰进入AR的质量分数小于1.55%,煤灰分离效果良好;装置可以长时间连续稳定运行,且操作气速范围较广,自行设计建造的循环流化床作为煤基化学链燃烧试验装置是可行的.  相似文献   

4.
A relatively long-term experiment for chemical looping combustion of coal with NiO/Al2O3 oxygen carrier was carried out in a 10 kWth continuous reactor of interconnected fluidized beds, and 100 h of operation was reached with the same batch of the oxygen carrier. The reactivity deterioration of the oxygen carriers was present during the experimental period. The reactivity deterioration of reacted oxygen carriers at different experimental stages was evaluated using X-ray diffraction (XRD), scanning electron microscope (SEM), and X-ray fluorescence spectrometer. SEM analysis showed no significant change in the morphology of the nickel-based oxygen carrier at the fuel reactor temperature ?940 °C, but loss of surface area and porosity of reacted oxygen carriers was observed when the fuel reactor temperature exceeded 960 °C. The results show that the sintering effect have mainly contributed to the reactivity deterioration of reacted oxygen carriers in the CLC process for coal, while the effects of coal ash and sulfur can be ignored. The oxidization of reduced oxygen carrier with air was an intensive exothermic process, and the high temperature of oxygen carrier particles led to sintering on the surface of oxygen carrier particles in the air reactor. Attention must be paid to control the external circulation of oxygen carrier particles in the interconnected fluidized beds in order to efficiently transport heat from the air reactor to the fuel reactor, and reduce the temperature of oxygen carrier particles in the air reactor. Improvement of reactivity deterioration of reacted oxygen carriers was achieved by the supplement of steam into the fuel reactor. Nevertheless, NiO/Al2O3 is still one of the optimal oxygen carriers for chemical looping combustion of coal if the sintering of oxygen carrier is minimized at the suitable reactor temperature.  相似文献   

5.
This paper analyzes a novel process for producing hydrogen and electricity from coal, based on chemical looping combustion (CLC) and gas turbine combined cycle, allowing for intrinsic capture of carbon dioxide. The core of the process consists of a three-reactors CLC system, where iron oxide particles are circulated to: (i) oxidize syngas in the fuel reactor (FR) providing a CO2 stream ready for sequestration after cooling and steam vapor condensation, (ii) reduce steam in the steam reactor (SR) to produce hydrogen, (iii) consume oxygen in the air reactor (AR) from air releasing heat to sustain the thermal balance of the CLC system and to generate electricity. A compacted fluidized bed, composed of two fuel reactors, is proposed here for full conversion of fuel gases in FR. The gasification CLC combined cycle plant for hydrogen and electricity cogeneration with Fe2O3/FeAl2O4 oxygen carriers was simulated using ASPEN® PLUS software. The plant consists of a supplementary firing reactor operating up to 1350 °C and three-reactors SR at 815 °C, FR at 900 °C and AR at 1000 °C. The results show that the electricity and hydrogen efficiencies are 14.46% and 36.93%, respectively, including hydrogen compression to 60 bar, CO2 compression to 121 bar, The CO2 capture efficiency is 89.62% with a CO2 emission of 238.9 g/kWh. The system has an electricity efficiency of 10.13% and a hydrogen efficiency of 41.51% without CO2 emission when supplementary firing is not used. The plant performance is attractive because of high energy conversion efficiency and low CO2 emission. Key parameters that affect the system performance are also discussed, including the conversion of steam to hydrogen in SR, supplementary firing temperature of the oxygen depleted air from AR, AR operation temperature, the flow of oxygen carriers, and the addition of inert support material to the oxygen carrier.  相似文献   

6.
以天然气为燃料,金属氧化物为载氧体,实现化学链置换燃烧(Chemical Looping Combustion-CLC)。“燃烧”气相产物H2O(汽)+CO2,冷凝水后,可分离出CO2。结合燃气蒸汽联合循环技术,实现能量的梯级利用,构成新型化学链置换燃烧联合循环,高效发电同时分离CO2。建立了化学链置换燃烧空气反应器(AR)和燃料反应器(FR)的质量平衡和能量平衡数学模型,对燃烧特性进行仿真计算。研究结果表明:载氧体氧化比率和还原比率增大,FR的出力及所需载氧体的最小量增加,使AR空气量减小;加大循环倍率或升高AR出口预设温度均使FR出口温度升高,AR空气量将更减少。这部分计算可为化学链置换燃烧技术的实验研究和系统概念设计提供基础数据。  相似文献   

7.
The multi‐stage fluidized bed can be used to preheat the combustion air by recovering the waste heat from the exhaust gas from industrial furnaces. The dilute‐phase fluidized bed may be formed to exclude the excessive pressure drop across the multi‐stage fluidized bed. But, in this case, the solid particles do not reach to the thermal equilibrium due to relatively short residence time in each layer of fluidized bed. In this study, a theoretical analysis on the dilute phase multistage fluidized bed heat exchanger was performed. A parameter related to the degree of thermal equilibrium between gas and solid particles at the dilute‐phase fluidized beds was derived. Using this parameter, a relatively simple expression was obtained for the thermal efficiencies of the multi‐stage fluidized bed heat exchanger and air preheater. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
Chemical-looping combustion (CLC) is recognized as a promising technique to efficiently and economically capture emitted carbon dioxide in common combustion processes. In this study, the bubbling fluidized bed (BFB) fuel reactor performance of the CLC system was examined through numerical simulation. The reduction reaction performance obtained from conventional BFB fuel reactor and BFB fuel reactor incorporated with internal particle circulation denoted as internal circulation bubbling fluidized bed reactor (ICBFB), were compared under the same fuel flow rate and operating conditions. By using CH4 as fuel and ilmenite as the oxygen carrier, it was found the reduction reaction can be enhanced by using the ICBFB fuel reactor due to particle circulation. The particle circulation increased the mixing and contact time between fuel and oxygen carrier that produced reduction reaction enhancement. Moreover, the simulation results indicated that higher reduction reaction performance can be achieved by higher reduction reaction temperature and initial oxygen carrier volume fraction.  相似文献   

9.
In this article, a novel cycle configuration has been studied, termed the extended chemical looping combustion integrated in a steam‐injected gas turbine cycle. The products of this system are hydrogen, heat, and electrical power. Furthermore, the system inherently separates the CO2 and hydrogen that is produced during the combustion. The core process is an extended chemical looping combustion (exCLC) process which is based on classical chemical looping combustion (CLC). In classical CLC, a solid oxygen carrier circulates between two fluidized bed reactors and transports oxygen from the combustion air to the fuel; thus, the fuel is not mixed with air and an inherent CO2 separation occurs. In exCLC the oxygen carrier circulates along with a carbon carrier between three fluidized bed reactors, one to oxidize the oxygen carrier, one to produces and separate the hydrogen, and one to regenerate the carbon carrier. The impacts of process parameters, such as flowrates and temperatures have been studied on the efficiencies of producing electrical power, hydrogen, and district heating and on the degree of capturing CO2. The result shows that this process has the potential to achieve a thermal efficiency of 54% while 96% of the CO2 is captured and compressed to 110 bar. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
A liquid‐fuel heat‐pipe reactor (LFHPR) is a novel fast heterogeneous reactor developed by Harbin Engineering University, China, on the basis of liquid‐fuel reactor designs and the heat‐pipe reactor concept. In the concept, the reactor abandons the graphite moderator and keeps neither fuel tubes arranged in the graphite nor fuel rings around the heat pipe. Instead, the reactor applies molten salt fuels, molten metallic eutectic fuels, or other fuels in liquid form. The heat generated in the reactor is removed by the heat pipes driven by liquid metals. With this change, an LFHPR is much more flexible in design and application and able to achieve several advanced features compared with conventional heat‐pipe reactors. In this paper, we describe the general reactor design of an LFHPR, discuss its potential advantages, and give a preliminary verification of the neutron physical feasibility for the reference case, which uses molten salt as the fuel, by using both Monte Carlo and deterministic methods. Results show that the LFHPR yields a hard neutron spectrum that brings a very good neutron economy and is a promising application for breeding. From our approach, we conclude that the proposed LFHPR has a very high power density and high negative temperature feedback coefficient.  相似文献   

11.
In this study, a two‐?uid Eulerian–Eulerian model has been carried out applying the kinetic theory of granular flow (KTGF) to study the hydrodynamics and heat transfer behavior of a fluidized bed reactor simultaneously. The effects of different gas–solid flow regimes on the operating conditions and heat transfer rate between the hot air and two types of low and high‐density inert particles are investigated in a fluidized bed dryer. Different gas–solid flow regimes for wood and glass particles of groups A, B, and D of Geldart's classification are simulated to introduce the most optimal flow regime in terms of heat transfer rate and operating costs. The compromise between the heating rate, the height required for the reactor, and the ratio of the final mass to the initial mass of solid particles, which specifies the need for a cyclone separator showed that the bubbling regime of Geldart B powder for low‐density particles and the turbulent regime of Geldart D powder or bubbling regime of Geldart B powder for high‐density particles are the optimal operating conditions and flow regimes. Furthermore, it was concluded that the convective heat transfer is the dominant mechanism, which increases with increasing the air velocity and decreasing the particle diameter in each group.  相似文献   

12.
Chemical-looping combustion (CLC) is a novel technology that can be used to meet growing demands on energy production without CO2 emissions. The CLC process includes two reactors, an air and a fuel reactor. Between these two reactors oxygen is transported by an oxygen carrier, which most often is a metal oxide. This arrangement prevents mixing of N2 from the air with CO2 from the combustion giving combustion gases that consist almost entirely of CO2 and H2O. The technique reduces the energy penalty that normally arises from the separation of CO2 from other flue gases, hence, CLC could make capture of CO2 cheaper. For the application of CLC to solid fuels, the char remaining after devolatilization will react indirectly with the oxygen carrier via steam gasification. It has been suggested that H2, and possibly CO, has an inhibiting effect on steam gasification in CLC. In this work experiments were conducted to investigate this effect. The experiments were conducted in a laboratory fluidized-bed reactor that was operating cyclically with alternating oxidation and reduction periods. Two different oxygen carriers were used as well as an inert sand bed. During the reducing period varying concentrations of CO or H2 were used together with steam while the oxidation was conducted with 10% O2 in N2. The temperature was constant at 970 °C for all experiments. The results show that CO does not directly inhibit the gasification whereas the partial pressure of H2 had a significant influence on fuel conversion. The results also suggest that dissociative hydrogen adsorption is the predominant hydrogen inhibition mechanism under the laboratory conditions, thus explaining why char conversion is much faster in a bed of oxygen carrying material, compared to an inert sand bed.  相似文献   

13.
Presently, there is no detailed review that summarizes the current knowledge status on oxy‐fuel combustion in fluidized bed combustors. This paper reviewed the existing literature in heat transfer, char combustion and pollutant emissions oxy‐fuel combustion in fluidized beds, as well as modelling of oxy‐fuel in FB boiler and gaps were identified for further research direction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Worldwide emphasis on fuel efficiency, low emissions, and use of low-quality fuels such as biogas continues to drive the development of combustors that operate over a wider range of fuel/air ratios and with higher burning velocities than their conventional counterparts. Enhancement of reaction rates is required to increase burning velocities and widen fuel/air operating ranges over values achievable in conventional combustors, and extensive research over the last few decades has shown that transferring heat in a reactor from hot combustion products to incoming reactants can accomplish this enhancement without external energy addition. These reactors, called heat recirculating reactors, use various geometries and flow strategies to optimize the heat transfer. In this paper, research on heat recirculating reactors is reviewed with an emphasis on the most important designs and applications. The basic characteristics of a heat recirculating reactor are encompassed in a simple configuration: a flame stabilized in a tube with high thermal conductivity. More complex designs that have evolved to further optimize heat transfer and recirculation are then described, including porous reactors with or without flame stabilization and channel reactors consisting of parallel tubes or slots. Advanced designs introduce additional means of heat transfer, such as transverse heat transfer from hot products through channel walls to incoming reactants, thereby leading to the counter-flow channel reactor. The flexibility of heat recirculating reactors to operate on a variety of fuels and over wide operating ranges has led to many applications including fuel reformers, radiant heaters and thermal oxidizers, and important work on these applications is reviewed. Finally, future research directions are discussed.  相似文献   

15.
In this paper, a novel process for hydrogen production by steam reforming of natural gas with inherent capture of carbon dioxide by chemical-looping combustion is proposed. The process resembles a conventional circulating fluidized bed combustor with reforming taking place in reactor tubes located inside a bubbling fluidized bed. Energy for the endothermic reforming reactions is provided by indirect combustion that takes place in two separate reactors: one for air and one for fuel. Oxygen is transferred between the reactors by a metal oxide. There is no mixing of fuel and air so carbon dioxide for sequestration is easily obtained. Process layout and expected performance are evaluated and a preliminary reactor design is proposed. It is found that the process should be feasible. It is also found that it has potential to achieve better selectivity towards hydrogen than conventional steam reforming plants due to low reactor temperatures and favorable heat-transfer conditions.  相似文献   

16.
Chemical-looping combustion(CLC)is considered to be a vital method for utilizing hydrocarbon fuel with low carbon emissions.A honeycomb fixed-bed reactor is a new kind of reactor for CLC.However,the further application of the reactor is limited by the inadequacy of the kinetic equations for CLC.In this paper,the experimental studies on the kinetic of Fe-based oxygen carriers were carried out by the CLC experiments using syngas which was obtained from one typical type of coal gasification products.The experimental results show that there were two individual stages for the kinetic characteristics during the fuel reaction process.Therefore,the CLC fuel reaction process could be described by a two-stage unreacted-core shrinking model and the reaction rate equations for each of the two phases were provided.In both stages,the dominant resistances were analyzed.The activation energy and the reaction order in both stages were calculated respectively as well.Comparing the experimental results of reaction rate with the calculated results of the obtained rate equations,it could be clearly seen that the reaction kinetics model was appropriate for the CLC in the honeycomb reactor.This work is expected to provide a guideline for the future development and industrial design of the honeycomb CLC reactors from the perspective of kinetics.  相似文献   

17.
Chemical looping combustion is a novel technology that can be used to meet the demand on energy production without CO2 emission. To improve CO2 capture efficiency in the process of chemical looping combustion of coal, a prototype configuration for chemical looping combustion of coal is made in this study. It comprises a fast fluidized bed as an air reactor, a cyclone, a spout-fluid bed as a fuel reactor and a loop-seal. The loop-seal connects the spout-fluid bed with the fast fluidized bed and is fluidized by steam to prevent the contamination of the flue gas between the two reactors. The performance of chemical looping combustion of coal is experimentally investigated with a NiO/Al2O3 oxygen carrier in a 1 kWth prototype. The experimental results show that the configuration can minimize the amount of residual char entering into the air reactor from the fuel reactor with the external circulation of oxygen carrier particles giving up to 95% of CO2 capture efficiency at a fuel reactor temperature of 985 °C. The effect of the fuel reactor temperature on the release of gaseous products of sulfur species in the air and fuel reactors is carried out. The fraction of gaseous sulfur product released in the fuel reactor increases with the fuel reactor temperature, whereas the one in the air reactor decreases correspondingly. The high fuel reactor temperature results in more SO2 formation, and H2S abatement in the fuel reactor. The increase of SO2 in the fuel reactor accelerates the reaction of SO2 with CO to form COS, and COS concentration in the fuel reactor exit gas increases with the fuel reactor temperature. The SO2 in the air reactor exit gas is composed of the product of sulfur in residual char burnt with air and that of nickel sulfide oxidization with air in the air reactor. Due to the evident decrease of residual char in the fuel reactor with increasing fuel reactor temperature, it results in the decrease of residual char entering the air reactor from the fuel reactor, and the decrease of SO2 from sulfur in the residual char burnt with air in the air reactor.  相似文献   

18.
This study aimed at presenting a model to simulate downdraft biomass gasification under steady‐state or unsteady‐state conditions. The model takes into account several processes that are relevant to the transformation of solid biomass into fuel gas, such as drying; devolatilization; oxidation; CO2, H2O, and H2 reduction with char, pressure losses, solid and gas temperature, particle diameter, and bed void fraction evolution; and heat transfer by several mechanisms such as solid–gas convection, bed–wall convection, and radiation in the solid phase. Model validation is carried out by performing experiments in two lab‐scale downdraft fixed bed reactors (unsteady‐state conditions) and in a novel industrial pilot plant of 400 kWth–100 kWe (steady‐state conditions). The capability of the model to predict the effect of several factors (reactor diameter, air superficial velocity, and particle size and biomass moisture) on key response variables (temperature field, maximum temperature inside the bed, flame front velocity, biomass consumption rate, and composition and calorific value of the producer gas) is evaluated. For most response variables, a good agreement between experimental and estimated values is attained, and the model is able to reproduce the trend of variation of the experimental results. In general terms, the process performance improves with higher reactor diameter and lesser air superficial velocity, particle size, and moisture content of biomass. The steady‐state simulation appears to be a versatile tool for simulating different reactor configurations (preheating systems, variable geometry, and different materials). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The autothermal Chemical-Looping Reforming (a-CLR) is a process where syngas is produced with two main advantages; there are captured CO2 emissions and the heat required for the syngas production is generated by the process itself. A Ni-based material is used as oxygen carrier circulating between two fluidized bed reactors: the fuel and air reactors. In this work, the auto-thermal conditions in a global H2 production process, integrated by the a-CLR process and a Water Gas Shift reactor, using different liquid fossil fuels were theoretically determined. The hydrogen production per mol of carbon in the fuel was similar for all fossil fuels, taking a value of 2.2 at the optimal operating temperature (700 °C). In addition, the possibility of working at low temperature for a maximum H2 production was experimentally demonstrated in a continuous 1 kWth a-CLR unit.  相似文献   

20.
Energy analysis of a fluidized‐bed drying system is undertaken to optimize the fluidized‐bed drying conditions for large wet particles (Group D) using energy models. Three critical factors; the inlet air temperature, the fluidization velocity, and the initial moisture contents of the material (e.g., wheat) are studied to determine their effects on the overall energy efficiency to optimize the fluidized bed drying process. In order to verify the model, different experimental data sets for wheat material taken from the literature are used. The results show that the energy efficiencies of the fluidized‐bed dryer decrease with increasing drying time and become the lowest at the end of the drying process. It is observed that the inlet air temperature has an important effect on energy efficiency for the material where the diffusion coefficient depends on both the temperature and the moisture content of the particle. Furthermore, the energy efficiencies showed higher values for particles with high initial moisture content while the effect of gas velocity varied depending on the material properties. A good agreement is achieved between the model predictions and the available experimental results. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号